Схемы драйверов светодиодных прожекторов. Драйверы для светодиодов: виды, характеристики и критерии выбора устройств Светодиодный токовый драйвер схема

Стандартная схема драйвера светодиодов РТ4115 представлена на рисунке ниже:

Напряжение питания должно быть по-крайней мере на 1.5-2 вольта выше, чем суммарное напряжение на светодиодах. Соответственно, в диапазоне питающих напряжений от 6 до 30 вольт, к драйверу можно подключить от 1 до 7-8 светодиодов.

Максимальное напряжение питания микросхемы 45 В , но работа в таком режиме не гарантируется (лучше обратите внимание на аналогичную микросхему ).

Ток через светодиоды имеет треугольную форму с максимальным отклонением от среднего значения ±15%. Средний ток через светодиоды задается резистором и рассчитывается по формуле:

I LED = 0.1 / R

Минимально допустимое значение R = 0.082 Ом, что соответствует максимальному току 1.2 А.

Отклонение тока через светодиод от расчетного не превышает 5%, при условии монтажа резистора R с максимальным отклонением от номинала 1%.

Итак, для включения светодиода на постоянную яркость вывод DIM оставляем висеть в воздухе (он внутри PT4115 подтянут к уровню 5В). При этом ток на выходе определяется исключительно сопротивлением R.

Если между выводом DIM и "землей" включить конденсатор, мы получим эффект плавного зажигания светодиодов. Время выхода на максимальную яркость будет зависеть от емкости конденсатора, чем она больше, тем дольше будет разгораться светильник.

Для справки: каждый нанофарад емкости увеличивает время включения на 0.8 мс.

Если же требуется сделать диммируемый драйвер для светодиодов с регулировкой яркости от 0 до 100%, то можно прибегнуть к одному из двух способов:

  1. Первый способ предполагает подачу на вход DIM постоянного напряжения в диапазоне от 0 до 6В. При этом регулировка яркости от 0 до 100% осуществляется при напряжении на выводе DIM от 0.5 до 2.5 вольт. Увеличение напряжения выше 2.5 В (и вплоть до 6 В) никак не влияет на ток через светодиоды (яркость не меняется). Напротив, уменьшение напряжения до уровня 0.3В или ниже приводит к отключению схемы и переводу ее в режим ожидания (ток потребления при этом падает до 95 мкА). Таким образом, можно эффективно управлять работой драйвера без снятия напряжения питания.
  2. Второй способ подразумевает подачу сигнала с широтно-импульсного преобразователя с выходной частотой 100-20000 Гц, яркость будет определяться коэффициентом заполнения (скважностью импульсов). Например, если высокий уровень будет держаться 1/4 часть периода, а низкий уровень, соответственно, 3/4, то это будет соответствовать уровню яркости в 25% от максимума. Надо понимать, что частота работы драйвера определяется индуктивностью дросселя и ни коем образом не зависит от частоты диммирования.

Схема драйвера светодиодов PT4115 с регулятором яркости постоянным напряжением представлена на рисунке ниже:

Такая схема регулировки яркости светодиодов прекрасно работает благодаря тому, что внутри микросхемы вывод DIM "подтянут" к шине 5В через резистор сопротивлением 200 кОм. Поэтому, когда ползунок потенциометра находится в крайнем нижнем положении, образуется делитель напряжения 200 + 200 кОм и на выводе DIM формируется потенциал 5/2=2.5В, что соответствует 100%-ой яркости.

Как работает схема

В первый момент времени, при подаче входного напряжения, ток через R и L равен нулю и встроенный в микросхему выходной ключ открыт. Ток через светодиоды начинает плавно нарастать. Скорость нарастания тока зависит от величины индуктивности и напряжения питания. Внутрисхемный компаратор сравнивает потенциалы до и после резистора R и, как только разница составит 115 мВ, на его выходе появляется низкий уровень, который закрывает выходной ключ.

Благодаря запасенной в индуктивности энергии, ток через светодиоды не исчезает мгновенно, а начинает плавно уменьшаться. Постепенно уменьшается и падение напряжения на резисторе R. Как только оно достигнет величины в 85 мВ, компаратор снова выдаст сигнал на открытие выходного ключа. И весь цикл повторяется сначала.

Если необходимо уменьшить размах пульсаций тока через светодиоды, допускается подключить конденсатор параллельно светодиодам. Чем больше будет его емкость, тем сильнее будет сглажена треугольная форма тока через светодиоды и тем более она станет похожа на синусоидальную. Конденсатор не влияет на рабочую частоту или эффективность работы драйвера, но увеличивает время установления заданного тока через светодиод.

Важные нюансы сборки

Важным элементом схемы является конденсатор C1. Он не просто сглаживает пульсации, но и компенсирует энергию, накопленную в катушке индуктивности в момент закрытия выходного ключа. Без C1 запасенная в дросселе энергия поступит через диод Шоттки на шину питания и может спровоцировать пробой микросхемы. Поэтому если включить драйвер без шунтирующего питание конденсатора, микросхема почти гарантированно накроется. И чем больше индуктивность дросселя, тем больше шансов спалить микруху.

Минимальная емкость конденсатора C1 - 4.7 мкФ (а при питании схемы пульсирующим напряжением после диодного моста - не менее 100 мкФ).

Конденсатор должен располагаться как можно ближе к микросхеме и иметь как можно более низкое значение ESR (т.е. танталовые кондеры приветствуются).

Также очень важно ответственно подойти к выбору диода. Он должен иметь малое прямое падение напряжения, короткое время восстановления во время переключения и стабильность параметров при повышении температуры p-n перехода, чтобы не допустить увеличения тока утечки.

В принципе, можно взять и обычный диод, но лучше всего под эти требования подходят диоды Шоттки. Например, STPS2H100A в SMD-исполнении (прямое напряжение 0.65V, обратное - 100V, ток в импульсе до 75А, рабочая температура до 156°C) или FR103 в корпусе DO-41 (обратное напряжение до 200V, ток до 30А, температура до 150°C). Очень неплохо себя показали распространенные SS34 , которые можно надергать из старых плат или купить целую пачку за 90 рублей .

Индуктивность дросселя зависит от выходного тока (см. таблицу ниже). Неверно выбранное значение индуктивности может привести к увеличению рассеиваемой на микросхеме мощности и выходу за пределы рабочего температурного режима.

При перегреве выше 160°C микросхема автоматически выключится и будет находиться в выключенном состоянии до тех пор пока не остынет до 140°C, после чего запустится автоматически.

Несмотря на имеющиеся табличные данные, допускается монтаж катушки с отклонением индуктивности в большую сторону от номинала. При этом изменяется КПД всей схемы, но она остается работоспособной.

Дроссель можно взять фабричный, а можно сделать своими руками из ферритового кольца от сгоревшей материнской платы и провода ПЭЛ-0,35.

Если важна максимальная автономность устройства (переносные светильники, фонари), то, в целях повышения эффективности схемы, имеет смысл потратить время на тщательный подбор дросселя. На малых токах индуктивность должна быть больше, чтобы минимизировать погрешности управления током, возникающие из-за задержки при переключении транзистора.

Дроссель должен располагаться как можно ближе к выводу SW, в идеале - подключен напрямую к нему.

И, наконец, самый прецизионный элемент схемы драйвера светодиода - резистор R. Как уже было сказано, его минимальное значение равно 0,082 Ом, что соответствует току 1,2 А.

К сожалению, не всегда удается найти резистор подходящего номинала, поэтому самое время вспомнить формулы расчета эквивалентного сопротивления при последовательном и параллельном включении резисторов:

  • R посл = R 1 +R 2 +…+R n ;
  • R пар = (R 1 xR 2) / (R 1 +R 2).

Комбинируя различные способы включения, можно получить требуемое сопротивление из нескольких имеющихся под рукой резисторов.

Важно так развести плату, чтобы ток диода Шоттки не протекал по дорожке между R и VIN, так как это может привести к погрешностям измерения тока нагрузки.

Низкая стоимость, высокая надежность и стабильность характеристик драйвера на РТ4115 способствует его повсеместному использованию в светодиодных лампах. Практически каждая вторая 12-вольтовая LED-лампа с цоколем MR16 собрана на PT4115 (или СL6808).

Сопротивление токозадающего резистора (в Омах) рассчитывается точно по такой же формуле:

R = 0.1 / I LED [A]

Типовая схема включения выглядит так:

Как видите, все очень похоже на схему светодиодной лампы с драйвером на РТ4515. Описание работы, уровни сигналов, особенности используемых элементов и компоновки печатной платы точно такие же как у , поэтому повторяться не имеет смысла.

CL6807 продают по 12 руб/шт, надо только смотреть, чтоб не подсунули паяные (рекомендую брать ).

SN3350

SN3350 - очередная недорогая микросхема для светодиодных драйверов (13 руб/штучка). Является практически полным аналогом PT4115 с той лишь разницей, что напряжение питания может лежать в диапазоне от 6 до 40 вольт, а максимальный выходной ток ограничен 750 миллиамперами (длительный ток не должен превышать 700 мА).

Как и все вышеописанные микросхемы, SN3350 представляет собой импульсный step-down преобразователь с функцией стабилизации выходного тока. Как обычно, ток в нагрузке (а в нашем случае в роли нагрузки выступают один или несколько светодиодов) задается сопротивлением резистора R:

R = 0.1 / I LED

Чтобы не превысить значение максимального выходного тока, сопротивление R не должно быть ниже 0.15 Ом.

Микросхема выпускается в двух корпусах: SOT23-5 (максимум 350 мА) и SOT89-5 (700 мА).

Как обычно, подавая постоянное напряжение на вывод ADJ, мы превращаем схему в простейший регулируемый драйвер для светодиодов.

Особенностью данной микросхемы является несколько иной диапазон регулировки: от 25% (0.3В) до 100% (1.2В). При снижении потенциала на выводе ADJ до 0.2В, микросхема переходит в спящий режим с потреблением в районе 60 мкА.

Типовая схема включения:

Остальные подробности смотрите в спецификации на микросхему (pdf-файл).

ZXLD1350

Не смотря на то, что эта микросхема является очередным клоном , некоторые отличия в технических характеристиках не допускают их прямую замену друг на друга.

Вот главные отличия:

  • микросхема стартует уже при 4.8В, но на нормальный режим работы выходит только при напряжении питания от 7 до 30 Вольт (на полсекунды допускается подавать до 40В);
  • максимальный ток нагрузки - 350 мА;
  • сопротивление выходного ключа в открытом состоянии - 1.5 - 2 Ома;
  • изменением потенциала на выводе ADJ от 0.3 до 2.5В можно менять выходной ток (яркость светодиода) в диапазоне от 25 до 200%. При напряжении 0.2В в течении, как минимум, 100 мкс, драйвер переходит в спящий режим с низким потреблением энергопотреблением (порядка 15-20 мкА);
  • если регулировка осуществляется ШИМ-сигналом, то при частоте следования импульсов ниже 500 Гц, диапазон изменения яркости составляет 1-100%. Если же частота выше 10 кГц, то от 25% до 100%;

Максимальное напряжение, которое можно подавать на вход регулировки яркости (ADJ) составляет 6В. При этом в диапазоне от 2.5 до 6В драйвер выдает максимальный ток, который задан токоограничительным резистором. Сопротивление резистора рассчитывается точно так же, как во всех вышеперечисленных микросхемах:

R = 0.1 / I LED

Минимальное сопротивление резистора - 0.27 Ом.

Типовая схема включения ничем не отличается от своих собратьев:

Без конденсатора С1 подавать питание не схему НЕЛЬЗЯ!!! В лучшем случае микросхема будет перегреваться и выдавать нестабильные характеристики. В худшем случае - мгновенно выйдет из строя.

Более подробные характеристики ZXLD1350 можно найти в даташите на эту микросхему .

Стоимость микросхемы неоправданно высокая (), при том, что выходной ток довольно небольшой. В общем, сильно на любителя. Я б не связывался.

QX5241

QX5241 - это китайский аналог MAX16819 (MAX16820), но в более удобном корпусе. Также выпускается под наименованиями KF5241, 5241B. Имеет маркировку "5241a" (см. фото).

В одном известном магазине их продают чуть ли не на вес (10 штук за 90 руб).

Драйвер работает по точно такому же принципу, как и все вышеописанные (понижающий преобразователь непрерывного действия), однако не содержит в своем составе выходной ключ, поэтому для работы требуется подключение внешнего полевого транзистора.

Можно взять любой N-канальный MOSFET с подходящим током стока и напряжением сток-исток. Подойдут, например, такие: SQ2310ES (до 20V!!!), 40N06 , IRF7413 , IPD090N03L , IRF7201 . Вообще, чем ниже будет напряжение открытия, тем лучше.

Вот некоторые ключевые характеристики LED-драйвера на QX5241:

  • максимальный выходной ток - 2.5 А;
  • КПД до 96%;
  • максимальная частота диммирования - 5 кГц;
  • максимальная рабочая частота преобразователя - 1 МГц;
  • точность стабилизации тока через светодиоды - 1%;
  • напряжение питания - 5.5 - 36 Вольт (нормально работает и при 38!);
  • выходной ток рассчитывается по формуле: R = 0.2 / I LED

Более подробно читайте в спецификации (на инглише).

Светодиодный драйвер на QX5241 содержит мало деталей и собирается всегда по такой схеме:

Микросхема 5241 бывает только в корпусе SOT23-6, так что со паяльником для пайки кастрюль к ней лучше не подходить. После монтажа плату следует хорошенько промывать от флюса, любые непонятные загрязнения могут негативно сказываться на режиме работы микросхемы.

Разница между питающим напряжением и суммарным падением напряжения на диодах должно быть вольта 4 (или больше). Если меньше - то наблюдаются какие-то глюки в работе (нестабильность тока и свист дросселя). Так что берите с запасом. Причем, чем больше выходной ток, тем больше запас по напряжению. Хотя, возможно, мне просто попался неудачный экземпляр микросхемы.

Если входное напряжение меньше, чем общее падение на светодиодах, то генерация срывается. При этом выходной полевик полностью открывается и светодиоды светятся (естественно, не на полную мощность, так как напряжения маловато).

AL9910

Diodes Incorporated создала одну весьма интересную микросхему драйвера светодиодов: AL9910. Любопытна она тем, что ее рабочий диапазон напряжений позволяет подключать ее прямо к сети 220В (через простой диодный выпрямитель).

Вот ее основные характеристики:

  • входное напряжение - до 500В (до 277В для переменки);
  • встроенный стабилизатор напряжения для питания микросхемы, не требующий гасящего резистора;
  • возможность регулировки яркости путем изменения потенциала на управляющей ноге от 0.045 до 0.25В;
  • встроенная защита от перегрева (срабатывает при 150°С);
  • рабочая частота (25-300 кГц) задается внешним резистором;
  • для работы необходим внешний полевой транзистор;
  • выпускается в восьминогих корпусах SO-8 и SO-8EP.

Драйвер, собранный на микросхеме AL9910 не имеет гальванической развязки с сетью, поэтому должен использоваться только там, где невозможно прямое прикосновение к элементам схемы.

Я публиковал несколько обзоров светодиодов, пришло время написать чем их можно кормить.
В обзоре учавствуют три позиции деталей (ссылки и цены присутствуют), но все они нужны для одной цели, сделать драйвер для светодиода.

Сразу извиняюсь за заглавное фото, оно упорно пытается масштабироваться по своему, исправить я не смог, более правильное на странице продавца.

Все знают, что светодиоды питаются током, желательно стабилизированным, что бы не менялась яркость при изменении напряжения. Для этой цели служит драйвер, по сути стабилизатор тока.
Ограничивать ток можно простыми микросхемами типа LM317 и специально предназначенными для этого стабилизаторами тока (на муське есть обзор одной такой детали), но они выделяют обычно достаточно много тепла, так как имеют низкий КПД. А ведь преимущество светодиодов как раз в высоком КПД.
Более интересными являются импульсные стабилизаторы тока, они посложнее, но имеют гораздо больший КПД, особенно если напряжение питания сильно отличается от напряжения на светодиоде.
Да, многие скажут что такой драйвер проще купить в Китае и не заморачиваться, соглашусь.
Но ведь всегда приятнее сделать что то своими руками. Собственно я так и решил, заказывая компоненты для драйвера.
Возможно я изобретаю велосипед. Но в обзоре учавствуют компоненты, которые пригодятся для многих других задач, и возможно многим будет полезна информация о том, что на продают и что мы получаем на самом деле.

Начну собственно с микросхемы. Это довольно хорошо известная любителям светодиодов PT4115. описание -
Микросхема имеет вывод для управления яркостью. Вход, насколько я понял, может управляться и ШИМом или изменением напряжения. Вход довольно высокоомный, так как при прикосновении к этому выводу светодиод начинал мерцать с частотой 100Гц.

Стоимость лота из 10 штук - 2 доллара.
После заказа микросхемы продавец отписался что посылка будет без трека и спросил, устроит ли это меня, я решил что 2 доллара не те деньги что бы сильно беспокоиться и дал добро.
Через некоторое время в почтовом ящике я обнаружил конверт.

Внутри был пакетик с необходимыми мне микросхемами.

Проверил одну микросхему, подключив ее навесным монтажом, отписал продавцу что все в порядке, подтвердил получение и стал ждать остальные детали.

После этого пришли дроссели.
Стоимость лота из 20 штук 7.36 доллара.

Их уже принесли мне на дом (впрочем как и следующий заказ).
Они были упакованы в картонную коробочку, хотя мне такая мера кажется излишней.
К слову у нас такие дроссели стоят значительно дороже, да и покупал я их не только для этого.

Собственно дроссели, Индуктивность 68 мкГн, ток 1.6 или 1.8 Ампера (у продавца не указано, потому ориентировочно), размеры 12х12х7мм.

Замер индуктивности показал отклонение в пределах погрешности.

Аналогично первому случаю подтвердил заказ, оставил хороший отзыв.

Ну и в конце пришли диоды Шоттки. Так как вещь в хозяйстве нужная, то заказал я их сотню.
Хотел больше, но не стал рисковать.

Цена лота из 100 штук 5.26 доллара. У нас они тоже стоят дороже.

Диоды промаркированы как SS34, на самом деле они меньше, по габаритам и характеристикам полностью соответствуют диодам SS24.
Сделал замер падения напряжения на диоде при токе в 1 Ампер и меня он устроил.

На этом часть закупок на Алиэкспресс закончилась.
В принципе на этом можно было и обзор закончить, но купить детали и не опробовать их в деле было бы неправильно. Потому естественно было решено довести дело до какого то логического конца.

Когда был у нас на рынке, попутно купил smd резисторы 1206 сопротивлением 1 Ом для датчика тока.
Думал сначала купить сразу низкоомные резсторы как в даташите на микросхему, но они выходят значительно дороже и если захочется настроить на разные токи, то надо покупать несколько номиналов, в общем неудобно, а резисторы 1 Ом я и так иногда использую.
в итоге получилось, что 1 такой резистор примерно соответствует току 0.1 Ампера, два параллельно 0.2 Ампера и т.д. smd резисторы и конденсаторы удобно паяются друг на друга потому можно легко подбирать необходимый ток.
Конденсаторы на входной фильтр питания и обрезки текстолита у меня были, а больше ничего не требуется.

Ну в общем стал я изобретать свой велосипед драйвер. накидал побыстрому платку в Спринте, схема из даташита, потому придумывать ничего не пришлось.
подобрал кусочек текстолита что бы сделать сразу 5 плат (планирую переделать 5 галогеновых светильников на светодиоды).

Немного фоток процесса и схема

Перенёс на текстолит.

Вытравил, просверлил отверстия, порезал на отдельные платки, пролудил дорожки и промыл от остатков флюса.

Собрал все необходимые компонеты

На выходе получилась такая платка, она больше по размерам чем продающиеся у китайцев, но имеет более мощный дроссель и два параллельных диода, соответственно меньшие потери и большую надежность, а габариты мне были совершенно некритичны.

После этого естественно захотелось проверить (куда же без этого).
Проверял с этими светодиодами -

Попутно выяснилось, что микросхема ток стабилизирует нормально, но все равно при полуторакратном повышении напряжения на входе, ток на выходе хоть несильно, но меняется.
Но я немного грешу на то, что может быть большая погрешность из-за пульсирующего тока (выходной ток измерял последовательно со светодиодом).
Можно было конечно померять ток при помощи резистора и осциллографа, но я счел это излишним, так как хорошо было заметно переход с линейного режима до ограничения тока, и последующий переход в режим стабилизации в режиме с ШИМ стабилизацией.

Номинал шунта был 1/6=0,166 Ома.

При таких параметрах на входе, на выходе был ток 0.7 Ампера.

При таких ток на выходе был 0.65 Ампера

Перед пороговым напряжением перехода в режим ШИМ стабилизации я получил максимальный ток -

При плавном повышении напряжения питания, входной ток сначала плавно рос, после перехода в режим стабилизации и дальнейшем повышении начинал плавно падать, что говорит о работе ШИМ стабилизации.
Кстати, при очень плавном повышении напряжения питания заметен переход, яркость светодиода сначала плавно увеличивается, после перехода скачкообразно снижается процентов на 10, после этого (при дальнейшем повышении входного напряжения) больше не меняется.
Видимо так микросхема отрабатывает включение ШИМ стабилизации.
Нагрев при токе 600мА практически не чувствуется, бесконтактно мерять нечем, а контактное измерение внесет большую погрешность.
Пробовал давать на выход 1 Ампер, нагрев конечно увеличивался, но несильно. да и нагрев был только у микросхемы. В общем остался доволен.

Спросите почему не купил готовое на том же Али?
-Детали пригодятся и в других поделках.
-Хотелось немного «размять руки».
-Затраты на все компоненты получились примерно 1 доллар на 1 плату.
-Решил протестировать не готовое устройство, а детали, так как их применяют не только в драйверах.
-На выходе получил устройство надежнее, чем предлагают магазины Китая.

Очень надеюсь, что данный обзор будет полезен.

Планирую купить +121 Добавить в избранное Обзор понравился +129 +282

Гарантией яркости свечения, эффективности и долговечности LED-источников является правильное питание, которое могут обеспечить специальные электронные устройства - драйверы для светодиодов. Они преобразуют напряжение переменного тока в сети 220В в напряжение постоянного тока заданного значения. Разобраться в том, какую функцию выполняют преобразователи и на что обратить внимание при их выборе, поможет анализ основных видов и характеристик устройств.

Основной функцией драйвера для светодиодов является обеспечение стабилизированного тока, проходящего через LED-прибор. Значение тока, протекающего через кристалл полупроводника, должно соответствовать паспортным параметрам светодиода. Это обеспечит устойчивость свечения кристалла и поможет избежать его преждевременной деградации. Кроме того при заданном токе падение напряжения будет соответствовать величине, необходимой для p-n перехода. Узнать соответствующее напряжение питания светодиода можно воспользовавшись вольт-амперной характеристикой.

При освещении жилых и офисных помещений светодиодными лампами и светильниками применяют драйверы, питание которых обеспечивается от сети переменного тока 220В. В автомобильном освещении (фары, ДХО и пр.), велосипедных фарах, портативных фонарях используют источники питания постоянного напряжения в диапазоне от 9 до 36В. Некоторые светодиоды небольшой мощности можно подключать без драйвера, но тогда в схему включения светодиода в сеть 220 вольт должен быть внесен резистор.

Напряжение драйвера на выходе указывается в интервале двух конечных значений, между которыми обеспечивается стабильное функционирование. Существуют адаптеры с интервалом от 3В до нескольких десятков. Чтобы запитать схему из 3-х последовательно соединенных светодиодов белого цвета, каждый из которых имеет мощность 1 Вт, потребуется драйвер с выходными значениями U – 9-12В, I – 350 мА. Падение напряжения для каждого кристалла составит около 3,3В, а в общей сумме 9,9В, что войдет в диапазон драйвера.

Основные характеристики преобразователей

Перед тем как купить драйвер для светодиодов, следует ознакомиться с основными характеристиками устройств. К ним относят напряжение на выходе, номинальный ток и мощность. Выходное напряжение преобразователя зависит от величины падения напряжения на LED-источнике, а также от способа подключения и количества светодиодов в схеме. Ток находится в зависимости от мощности и яркости излучающих диодов. Драйвер должен обеспечить светодиодам такой ток, который необходим им для поддержки требуемой яркости.

Одной из важных характеристик драйвера считается мощность, которую прибор выдает в виде нагрузки. На выбор мощности драйвера влияет мощность каждого LED-прибора, общее количество и цвет свечения светодиодов. Алгоритм расчета мощности состоит в том, что максимальная мощность устройства не должна быть ниже потребления всех светодиодов:

P = P(led) × n ,

где P(led) – мощность единичного LED-источника, а n - количество светодиодов.

Кроме того должно выполняться обязательное условие, при котором бы обеспечивался запас мощности в пределах 25-30%. Таким образом значение максимальной мощности должно быть не меньше значения (1,3 х P).

Следует также брать во внимание цветовые характеристики светодиодов. Ведь различные по цвету полупроводниковые кристаллы имеют разную величину падения напряжения при прохождении через них тока одинаковой силы. Так падение напряжения у красного светодиода при токе 350 мА составляет 1,9-2,4В, тогда среднее значение его мощности будет равно 0,75 Вт. У аналога зеленого цвета величина падения напряжения находится в пределах от 3,3 до 3,9В и при таком же токе мощность составит уже 1,25 Вт. Значит к драйверу для светодиодов 12В можно подсоединить 16 красных LED-источников или 9 зеленых.

Полезный совет! При выборе драйвера для светодиодов специалисты советуют не пренебрегать максимальным значением мощности прибора.

Какими бывают драйверы для светодиодов по типу устройства

Драйверы для светодиодов классифицируют по типу устройства на линейные и импульсные. Структура и типовая схема драйвера для светодиодов линейного типа представляет собой генератор тока на транзисторе с р-каналом. Такие устройства обеспечивают плавную стабилизацию тока при условии неустойчивого напряжения на входном канале. Они являются простыми и дешевыми устройствами, однако отличаются низкой эффективностью, выделяют при работе много тепла и не могут быть использованы как драйвера для мощных светодиодов.

Импульсные устройства создают в выходном канале ряд высокочастотных импульсов. Их работа основана на принципе ШИМ (широтно-импульсной модуляции), когда средняя величина тока на выходе обуславливается коэффициентом заполнения, т.е. отношением длительности импульса к числу его повторений. Изменение величины среднего выходного тока происходит вследствие того, что частота импульсов остается неизменной, а коэффициент заполнения изменяется от 10-80%.

Благодаря высокому КПД преобразований (до 95%) и компактности устройств, они нашли широкое применение для портативных светодиодных конструкций. Кроме того, эффективность устройств положительно сказывается на длительности функционирования автономных приборов питания. Преобразователи импульсного типа имеют компактные размеры и отличаются обширным диапазоном входных напряжений. Недостатком этих устройств является высокий уровень электромагнитных помех.

Полезный совет! Приобретать LED-драйвер следует на этапе выбора светодиодных источников, предварительно определившись со схемой светодиодов от 220 вольт.

Перед тем как подобрать драйвер для светодиодов, необходимо знать условия его функционирования и место размещения светодиодных приборов. Широтно-импульсные драйверы, в основе которых лежит одна микросхема, имеют миниатюрные размеры и рассчитаны на питание от автономных низковольтных источников. Основное применение этих устройств – тюнинг автомобилей и светодиодная подсветка. Однако ввиду использования упрощенной электронной схемы качество таких преобразователей несколько ниже.

Диммируемые драйверы для светодиодов

Современные драйверы для светодиодов совместимы с устройствами регулирования яркости свечения полупроводниковых приборов. Использование диммируемых драйверов позволяет управлять уровнем освещенности в помещениях: снижать интенсивность свечения в дневное время, подчеркивать или скрывать отдельные элементы в интерьере, зонировать пространство. Это, в свою очередь, дает возможность не только рационально использовать электроэнергию, но и экономить ресурс светодиодного источника света.

Диммируемые драйверы бывают двух типов. Одни подсоединяются между блоком питания и LED-источниками. Такие устройства управляют энергией, поступающей от источника питания к светодиодам. В основе таких устройств используется ШИМ-управление, при котором энергия поступает к нагрузке в виде импульсов. Длительность импульсов определяет количество энергии от минимального до максимального значения. Драйверы такого типа применяются по большей части для светодиодных модулей с фиксированным напряжением, таких как светодиодные ленты, бегущие строки и др.

Управление драйвером осуществляется с помощью или ШИМ

Диммируемые преобразователи второго типа управляют непосредственно источником питания. Принцип их работы заключается как в ШИМ-регулировании, так и в управлении величиной протекающего через светодиоды тока. Диммируемые драйверы этого типа используются для LED-приборов со стабилизированным током. Стоит отметить, что при управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты.

Сравнивая эти два метода регулирования, стоит отметить, что при регулировании величины тока через LED-источники наблюдается не только изменение яркости свечения, но и изменение цвета свечения. Так, белые светодиоды при меньшем токе излучают желтоватый свет, а при увеличении – светятся синим. При управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты и высокий уровень электромагнитных помех. В связи с этим ШИМ-управление используется достаточно редко в отличие от регулирования тока.

Схемы драйверов для светодиодов

Многие производители выпускают для светодиодов микросхемы драйверов, позволяющие запитывать источники от пониженного напряжения. Все существующие драйверы делят на простые, выполненные на базе от 1-3 транзисторов и более сложные с использованием специальных микросхем с широтно-импульсной модуляцией.

Компания ON Semiconductor предлагает в качестве основы для драйверов широкий выбор микросхем. Они отличаются приемлемой стоимостью, отличной эффективностью преобразования, экономичностью и низким уровнем электромагнитных импульсов. Производителем представлен драйвер импульсного типа UC3845 с величиной тока на выходе до 1А. На такой микросхеме можно реализовать схему драйвера для светодиода 10W.

Электронные компоненты HV9910 (Supertex) являются популярной микросхемой для драйверов, благодаря простому схемному разрешению и невысокой цене. Она имеет встроенный регулятор напряжения и выводы для осуществления управления яркостью, а также вывод для программирования частоты переключений. Выходное значение тока составляет до 0,01А. На данной микросхеме возможно воплотить простой драйвер для светодиодов.

На базе микросхемы UCC28810 (пр-во компании Texas Instruments) можно создать схему драйвера для мощных светодиодов. В такой схеме LED-драйвера может создаваться выходное напряжение величиной 70-85В для светодиодных модулей, состоящих из 28 LED-источников током 3 А.

Полезный совет! Если вы планируете купить сверхяркие светодиоды мощностью 10 Вт, для конструкций из них можно использовать импульсный драйвер на микросхеме UCC28810.

Компания Clare предлагает создание простого драйвера импульсного типа на основе микросхемы CPC 9909. Она включает контроллер преобразователя, размещенного в компактном корпусе. За счет встроенного стабилизатора напряжения допускается питание преобразователя от напряжения 8-550В. Микросхема CPC 9909 позволяет эксплуатировать драйвер в условиях широкого разброса температурных режимов от -50 до 80°С.

Как подобрать драйвер для светодиодов

На рынке представлен широкий ассортимент драйверов для светодиодов от разных производителей. Многие из них, особенно китайского производства, отличаются низкой ценой. Однако покупать такие устройства не всегда выгодно, так как большинство из них не соответствует заявленным характеристикам. Кроме того такие драйверы не сопровождаются гарантией, а в случае обнаружения брака их нельзя вернуть или заменить на качественные.

Так существует вероятность приобретения драйвера, заявленная мощность которого составляет 50 W. Однако на деле оказывается, что эта характеристика имеет непостоянный характер и такая мощность является лишь кратковременной. В реальности же такое устройство будет работать как LED-driver 30W или максимум 40W. Так же может оказаться, что в начинке не будет хватать некоторых компонентов, отвечающих за устойчивое функционирование драйвера. Кроме того могут применяться компоненты низкого качества и с небольшим сроком службы, что является по сути браком.

При покупке стоит обращать внимание на указание бренда изделия. На качественном товаре обязательно будет указан изготовитель, который предоставит гарантию и будет готов отвечать за свою продукцию. Следует отметить, что и срок службы драйверов от проверенных производителей будет гораздо больше. Ниже приведено ориентировочное время работы драйверов в зависимости от изготовителя:

  • драйвер от сомнительных производителей – не более 20 тыс. часов;
  • устройства среднего качества – около 50 тыс. часов;
  • преобразователь от проверенной фирмы-изготовителя с использованием качественных компонентов – свыше 70 тыс. часов.

Полезный совет! Какого качества будет светодиодный драйвер – выбирать вам. Однако следует заметить, что особенно важно приобретать фирменный преобразователь, если речь идет о применении его для прожекторов из светодиодов и мощных светильников.

Расчет драйверов для светодиодов

Чтобы определить напряжение на выходе светодиодного драйвера, необходимо рассчитать отношение мощности (Вт) к значению тока (А). К примеру, драйвер имеет следующие характеристики: мощность 3 Вт и ток 0,3 А. Расчетное отношение составляет 10В. Таким образом, это будет максимальная величина выходного напряжения данного преобразователя.

Статья по теме:


Типы. Схемы подключения LED-источников. Расчет сопротивления для светодиодов. Проверка светодиода мультиметром. LED-конструкции своими руками.

Если необходимо подключить 3 LED-источника, ток каждого из которых составляет 0,3 мА при напряжении питания 3В. Подключая к светодиодному драйверу один из приборов, то выходное напряжение будет равно 3В и ток 0,3 А. Собрав последовательно два LED-источника, выходное напряжение будет равно 6В и ток 0,3 А. Добавив в последовательную цепочку третий светодиод, получим 9В и 0,3 А. При параллельном соединении 0,3 А одинаково распределятся между светодиодами по 0,1 А. Подключая светодиоды к устройству на 0,3 А при значении тока 0,7, им достанется всего 0,3 А.

Таков алгоритм функционирования светодиодных драйверов. Они выдают такое количество тока, на которое они рассчитаны. Способ подключения LED-приборов в этом случае не играет роли. Есть модели драйверов, предполагающие любое количество подключаемых к ним светодиодов. Но тогда существует ограничение по мощности LED-источников: она не должна превышать мощность самого драйвера. Выпускаются драйверы, рассчитанные на определенное число подключаемых светодиодов К ним разрешается подключить меньшее количество светодиодов. Но такие драйверы имеют низкую эффективность, в отличие от устройств, рассчитанных на конкретное количество LED-приборов.

Следует отметить, что у драйверов, рассчитанных на фиксированное количество излучающих диодов, предусмотрена защита от аварийных ситуаций. Такие преобразователи некорректно работают, если к ним подключить меньшее число светодиодов: они будут мерцать или вообще не будут светиться. Таким образом, если подключить к драйверу напряжение без соответствующей нагрузки, он будет работать нестабильно.

Где купить драйверы для светодиодов

Купить LED-driver можно в специализированных точках по продаже радиодеталей. Кроме того гораздо удобней ознакомиться с продукцией и заказать необходимое изделие, используя каталоги соответствующих сайтов. Помимо этого в интернет-магазинах можно приобрести не только преобразователи, а также приборы светодиодного освещения и сопутствующую продукцию: , устройства управления, средства подключения, электронные компоненты для ремонта и сборки драйвера для светодиодов своими руками.

Реализующими компаниями представлен огромный ассортимент драйверов для светодиодов, технические характеристики и цены которых можно увидеть в прайсах. Как правило цены на продукцию носят ориентировочный характер и уточняются при заказе у менеджера проекта. В ассортименте имеются преобразователи различной мощности и степени защиты, применяемые для наружного и внутреннего освещения, а также для подсветки и тюнинга автомобилей.

Выбирая драйвер следует учитывать условия его использования и потребляемую мощность светодиодной конструкции. Поэтому приобретать драйвер необходимо перед покупкой светодиодов. Так, прежде чем купить драйвер для светодиодов 12 вольт, необходимо принять во внимание, что он должен иметь запас мощности около 25-30%. Это нужно для того, чтобы уменьшить риск повреждения или полного выхода из строя прибора при коротком замыкании или перепадах напряжения в сети. Стоимость преобразователя зависит от количества приобретаемых устройств, формы оплаты и сроков доставки.

В таблице приведены основные параметры и размеры стабилизаторов напряжения 12 вольт для светодиодов с указанием их ориентировочной цены:

Модификация LD DC/AC 12 V Габариты, мм (в/ш/г) Выходной ток, A Мощность, W Цена, руб.
1x1W 3-4VDC 0.3A MR11 8/25/12 0,3 1х1 73
3x1W 9-12VDC 0.3A MR11 8/25/12 0,3 3х1 114
3x1W 9-12VDC 0.3A MR16 12/28/18 0,3 3х1 35
5-7x1W 15-24VDC 0.3A 12/14/14 0,3 5-7х1 80
10W 21-40V 0.3A AR111 21/30 0,3 10 338
12W 21-40V 0.3A AR11 18/30/22 0,3 12 321
3x2W 9-12VDC 0.4A MR16 12/28/18 0,4 3х2 18
3x2W 9-12VDC 0.45A 12/14/14 0,45 3х2 54

Изготовление драйверов для светодиодов своими руками

Используя готовые микросхемы, радиолюбители могут самостоятельно собирать драйверы для светодиодов различной мощности. Для этого необходимо уметь читать электрические схемы и иметь навыки работы с паяльником. Для примера можно рассмотреть несколько вариантов LED-драйверов своими руками для светодиодов.

Схему драйвера для светодиода 3W можно реализовать на основе микросхемы PT4115 китайского производства PowTech. Микросхема может быть применена для питания LED-приборов свыше 1W и включает в себя блоки управления, которые имеют на выходе достаточно мощный транзистор. Драйвер на базе PT4115 обладает высокой эффективностью и имеет минимальное количество компонентов обвязки.

Обзор PT4115 и технические параметры ее компонентов:

  • функция управление яркостью свечения (диммирование);
  • входное напряжение – 6-30В;
  • значение выходного тока – 1,2 А;
  • отклонение стабилизации тока до 5%;
  • предохранение от разрывов нагрузки;
  • наличие выводов для диммирования;
  • эффективность – до 97%.

Микросхема имеет следующие выводы:

  • для выходного переключателя – SW;
  • для сигнального и питающего участка схемы – GND;
  • для регулирования яркости – DIM;
  • входной датчик тока – CSN;
  • напряжение питания – VIN;

Схема драйвера для светодиодов своими руками на базе PT4115

Схемы драйвера для питания LED-приборов рассеивающей мощностью 3 Вт могут быть исполнены в двух вариантах. Первый предполагает наличие источника питания напряжением от 6 до 30В. В другой схеме предусмотрено питание от источника переменного тока напряжением от 12 до 18В. В этом случае в схему введен диодный мост, на выходе которого устанавливается конденсатор. Он способствует сглаживанию колебаний напряжения, емкость его составляет 1000 мкФ.

Для первой и второй схемы особое значение имеет конденсатор (CIN): этот компонент призван уменьшить пульсацию и компенсировать накопленную катушкой индуктивности энергию при закрытии MOP-транзистора. В отсутствие конденсатора вся энергия индуктивности через полупроводниковый диод ДШБ (D) попадет на вывод напряжения питания (VIN) и станет причиной пробоя микросхемы относительно питания.

Полезный совет! Следует обязательно учитывать, что подключение драйвера для светодиодов в отсутствие входного конденсатора не разрешается.

Учитывая количество и то, сколько потребляют светодиоды, рассчитывается индуктивность (L). В схеме светодиодного драйвера следует подбирать индуктивность, величина которой 68-220 мкГн. Об этом свидетельствуют данные технической документации. Можно допустить небольшое увеличение значения L, однако следует учесть, что тогда снизится КПД схемы в целом.

Как только подается напряжение, величина тока при прохождении его через резистор RS (работает как датчик тока) и L будет нулевая. Далее, CS comparator анализирует уровни потенциалов, находящихся до резистора и после него – в результате появляется высокая концентрация на выходе. Ток, идущий в нагрузку, нарастает до определенного значения, контролируемого RS. Ток увеличивается в зависимости от значения индуктивности и от величины напряжения.

Сборка компонентов драйвера

Компоненты обвязки микросхемы РТ 4115 подбираются с учетом указаний производителя. Для CIN следует применять низкоимпедансный конденсатор (конденсатор с низким ESR), так как применение других аналогов негативно скажется на эффективности драйвера. Если устройство будет запитано от блока со стабилизированным током, на входе понадобится один конденсатор емкостью от 4,7 мкФ. Его рекомендуется разместить рядом с микросхемой. Если ток переменный, потребуется ввести твердотельный танталовый конденсатор, емкость которого не ниже 100 мкФ.

В схему включения для светодиодов 3 Вт необходимо установить катушку индуктивности на 68 мкГн. Она должна располагаться как можно ближе к выводу SW. Можно сделать катушку самостоятельно. Для этого потребуется кольцо из вышедшего из строя компьютера и обмоточный провод (ПЭЛ-0,35). В качестве диода D можно использовать диод FR 103. Его параметры: емкость 15 пФ, время восстановления 150 нс, температура от -65 до 150°С. Он может справиться с импульсами тока до 30 А.

Минимальная величина резистора RS в схеме светодиодного драйвера составляет 0,082 Ом, ток – 1,2 А. Чтобы рассчитать резистор, необходимо использовать значение тока, необходимого для светодиода. Ниже приведена формула для расчета:

RS = 0,1 / I ,

где I – номинальная величина тока LED-источника.

Величина RS в схеме светодиодного драйвера составляет 0,13 Ом, соответственно значение тока – 780 мА. Если такой резистор не удается отыскать, можно использовать несколько низкоомных компонентов, используя при расчете формулу сопротивления для параллельного и последовательного включения.

Компоновка драйвера для светодиода 10 Ватт своими руками

Собрать драйвер для мощного светодиода можно самостоятельно, используя электронные платы от вышедших из строя люминесцентных ламп. Чаще всего в таких светильниках перегорают лампы. Электронная плата остается рабочей, что позволяет использовать ее компоненты для самодельных блоков питания, драйверов и других устройств. Для работы могут понадобиться транзисторы, конденсаторы, диоды, катушки индуктивности (дроссели).

Неисправную лампу необходимо аккуратно разобрать с помощью отвертки. Чтобы сделать драйвер для светодиода 10 Вт, следует воспользоваться люминесцентной лампой, мощность которой 20 Вт. Это необходимо для того, чтобы дроссель мог с запасом выдержать нагрузку. Для более мощной лампы следует либо подбирать соответствующую плату, либо заменить сам дроссель на аналог с большим сердечником. Для LED-источников с меньшей мощностью можно отрегулировать число витков обмотки.

Далее поверх первичных витков обмотки необходимо сделать 20 витков провода и с помощью паяльника соединить эту обмотку с выпрямительным диодным мостом. После этого следует подать напряжение от сети 220В и измерить выходное напряжение на выпрямителе. Его значение составило 9,7В. LED-источник через амперметр потребляет 0,83 А. Номинал этого светодиода 900 мА, однако чтобы заниженное потребление тока позволит увеличить его ресурс. Сборка диодного моста осуществляется путем навесного монтажа.

Новую плату и диодный мост можно разместить в подставке от старого настольного светильника. Таким образом, светодиодный драйвер можно собрать самостоятельно из имеющихся в наличии радиодеталей от вышедших из строя устройств.

В силу того что светодиоды достаточно требовательны к источникам питания, необходимо правильно подбирать к ним драйвер. Если преобразователь выбран правильно, можно быть уверенным, что параметры LED-источников не ухудшатся и светодиоды прослужат положенный им срок.

Светодиоды получили большую популярность. Главную роль в этом сыграл светодиодный драйвер, поддерживающий постоянный выходной ток определенного значения. Можно сказать, что это устройство представляет собой источник тока для LED-приборов. Такой драйвер тока, работая вместе со светодиодом, обеспечивает долголетний срок службы и надежную яркость. Анализ характеристик и видов этих устройств позволяет понять, какие они выполняют функции, и как их правильно выбирать.

Что такое драйвер и каково его назначение?

Драйвер для светодиодов является электронным устройством, на выходе которого образуется постоянный ток после стабилизации. В данном случае образуется не напряжение, а именно ток. Устройства, которые стабилизируют напряжение, называются блоками питания. На их корпусе указывается выходное напряжение. Блоки питания 12 В применяют для питания LED-линеек, светодиодной ленты и модулей.

Основным параметром LED-драйвера, которым он сможет обеспечивать потребителя длительное время при определенной нагрузке, является выходной ток. В качестве нагрузки применяются отдельные светодиоды или сборки из аналогичных элементов.

Драйвер для светодиода обычно питается от сети напряжением 220 В. В большинстве случаев диапазон рабочего выходного напряжения составляет от трех вольт и может достигать нескольких десятков вольт. Для подключения светодиодов 3W в количестве шести штук потребуется драйвер с выходным напряжением от 9 до 21 В, рассчитанный на 780 мА. При своей универсальности он обладает малым КПД, если на него включить минимальную нагрузку.

При освещении в автомобилях, в фарах велосипедов, мотоциклов, мопедов и т. д., в оснащении переносных фонарей используется питание с постоянным напряжением, значение которого варьируется от 9 до 36 В. Можно не применять драйвер для светодиодов с небольшой мощностью, но в таких случаях потребуется внесение соответствующего резистора в питающую сеть напряжением 220 В. Несмотря на то, что в бытовых выключателях используется этот элемент, и рассчитывать на надежность достаточно проблематично.

Основные особенности

Мощность, которую эти устройства способны отдавать под нагрузкой, является важным показателем. Не стоит перегружать его, пытаясь добиться максимальных результатов. В результате таких действий могут выйти из строя драйверы для светодиодов или же сами LED-элементы.


На электронную начинку устройства влияет множество причин:

  • класс защиты аппарата;
  • элементная составляющая, которая применяется для сборки;
  • параметры входа и выхода;
  • марка производителя.

Изготовление современных драйверов выполняется при помощи микросхем с использованием технологии широтно-импульсного преобразования, в состав которых входят импульсные преобразователи и схемы, стабилизирующие ток. ШИМ-преобразователи запитываются от 220 В, обладают высоким классом защиты от коротких замыканий, перегрузок, а так же высоким КПД.

Технические характеристики

Перед приобретением преобразователя для светодиодов следует изучить характеристики устройства. К ним относятся следующие параметры:

  • выдаваемая мощность;
  • выходное напряжение;
  • номинальный ток.

Схема подключения LED-драйвера

На выходное напряжение влияет схема подключения к источнику питания, количество в ней светодиодов. Значение тока пропорционально зависит от мощности диодов и яркости их излучения. Светодиодный драйвер должен выдавать столько тока для светодиодов, сколько потребуется для обеспечения постоянной яркости. Стоит помнить, что мощность необходимого устройства должна быть более потребляемой всеми светодиодами. Рассчитать ее можно, используя следующую формулу:

P (led) – мощность одного LED-элемента;

n - количество LED-элементов.

Для обеспечения длительной и стабильной работы драйвера следует учитывать запас мощности устройства в 20–30% от номинальной.


Выполняя расчет, следует учитывать цветовой фактор потребителя, так как он влияет на падение напряжения. У разных цветов оно будет иметь отличающиеся значения.

Срок годности

Светодиодные драйверы, как и вся электроника, обладают определенным сроком службы, на который сильно влияют эксплуатационные условия. LED-элементы, изготовленные известными брендами, рассчитаны на работу до 100 тысяч часов, что намного дольше источников питания. По качеству рассчитанный драйвер можно классифицировать на три типа:

  • низкого качества, с работоспособностью до 20 тысяч часов;
  • с усредненными параметрами - до 50 тысяч часов;
  • преобразователь, состоящий из комплектующих известных брендов - до 70 тысяч часов.

Многие даже не знают, зачем обращать внимание на этот параметр. Это понадобится для выбора устройства для длительного использования и дальнейшей окупаемости. Для использования в бытовых помещениях подойдет первая категория (до 20 тысяч часов).

Как подобрать драйвер?

Насчитывается множество разновидностей драйверов, используемых для LED-освещения. Большинство из представленной продукции изготовлено в Китае и не имеет нужного качества, но выделяется при этом низким ценовым диапазоном. Если нужен хороший драйвер, лучше не гнаться за дешевизной китайского производства, так как их характеристики не всегда совпадают с заявленными, и редко когда к ним прилагается гарантия. Может быть брак на микросхеме или быстрый выход из строя устройства, в таком случае не удастся совершить обмен на более качественное изделие или вернуть средства.


Наиболее часто выбираемым вариантом является бескорпусный драйвер, питающийся от 220 В или 12 В. Различные модификации позволяют использовать их для одного или более светодиодов. Эти устройства можно выбрать для организации исследований в лаборатории или же проведения экспериментов. Для фито-ламп и бытового применения выбирают драйверы для светодиодов, находящиеся в корпусе. Бескорпусные устройства выигрывают в ценовом плане, но проигрывают в эстетике, безопасности и надежности.

Виды драйверов

Устройства, осуществляющие питание светодиодов, условно можно разделить на:

  • импульсные;
  • линейные.

Устройства импульсного типа производят на выходе множество токовых импульсов высокой частоты и работают по принципу ШИМ, КПД у них составляет до 95%. Импульсные преобразователи имеют один существенный недостаток - во время работы возникают сильные электромагнитные помехи. Для обеспечения стабильного выходного тока в линейный драйвер установлен генератор тока, который играет роль выхода. Такие устройства имеют небольшой КПД (до 80%), но при этом просты в техническом плане и стоят недорого. Такие устройства не получится использовать для потребителей большой мощности.

Из вышеперечисленного можно сделать вывод, что источник питания для светодиодов следует выбирать очень тщательно. Примером может послужить люминесцентная лампа, на которую подается ток, превышающий норму на 20%. В ее характеристиках практически не произойдет изменений, а вот работоспособность светодиода уменьшится в несколько раз.

Светодиоды для своего питания требуют применения устройств, которые будут стабилизировать ток, проходящий через них. В случае индикаторных и других маломощных светодиодов можно обойтись резисторами. Их несложный расчет можно еще упростить, воспользовавшись "Калькулятором светодиодов" .

Для использования мощных светодиодов не обойтись без использования токостабилизирующих устройств – драйверов. Правильные драйвера имеют очень высокий КПД - до 90-95%. Кроме того, они обеспечивают стабильный ток и при изменении напряжения источника питания. А это может быть актуально, если светодиод питается, например, от аккумуляторов. Самые простые ограничители тока - резисторы - обеспечить это не могут по своей природе.

Немного ознакомиться с теорией линейных и импульсных стабилизаторов тока можно в статье "Драйвера для светодиодов" .

Готовый драйвер, конечно, можно купить. Но гораздо интереснее сделать его своими руками. Для этого потребуются базовые навыки чтения электрических схем и владения паяльником. Рассмотрим несколько простых схем самодельных драйверов для мощных светодиодов.


Простой драйвер. Собран на макетке, питает могучий Cree MT-G2

Очень простая схема линейного драйвера для светодиода. Q1 – N-канальный полевой транзистор достаточной мощности. Подойдет, например, IRFZ48 или IRF530. Q2 – биполярный npn-транзистор. Я использовал 2N3004, можно взять любой похожий. Резистор R2 – резистор мощностью 0.5-2Вт, который будет определять силу тока драйвера. Сопротивление R2 2.2Ом обеспечивает ток в 200-300мА. Входное напряжение не должно быть очень большим – желательно не превышать 12-15В. Драйвер линейный, поэтому КПД драйвера будет определяться отношением V LED / V IN , где V LED – падение напряжения на светодиоде, а V IN – входное напряжение. Чем больше будет разница между входным напряжением и падением на светодиоде и чем больше будет ток драйвера, тем сильнее будет греться транзистор Q1 и резистор R2. Тем не менее, V IN должно быть больше V LED на, как минимум, 1-2В.

Для тестов я собрал схему на макетной плате и запитал мощный светодиод CREE MT-G2 . Напряжение источника питания - 9В, падение напряжения на светодиоде - 6В. Драйвер заработал сразу. И даже с таким небольшим током (240мА) мосфет рассеивает 0,24 * 3 = 0,72 Вт тепла, что совсем не мало.

Схема очень проста и даже в готовом устройстве может быть собрана навесным монтажом.

Схема следующего самодельного драйвера также предельно проста. Она предполагает использование микросхемы понижающего преобразователя напряжения LM317. Данная микросхема может быть использована как стабилизатор тока.


Еще более простой драйвер на микросхеме LM317

Входное напряжение может быть до 37В, оно должно быть как минимум на 3В выше падения напряжения на светодиоде. Сопротивление резистора R1 рассчитывается по формуле R1 = 1.2 / I, где I – требуемая сила тока. Ток не должен превышать 1.5А. Но при таком токе резистор R1 должен быть способен рассеять 1.5 * 1.5 * 0.8 = 1.8 Вт тепла. Микросхема LM317 также будет сильно греться и без радиатора не обойтись. Драйвер также линейный, поэтому для того, чтобы КПД был максимальным, разница V IN и V LED должна быть как можно меньше. Поскольку схема очень простая, она также может быть собрана навесным монтажом.

На той же макетной плате была собрана схема с двумя одноваттными резисторами сопротивленим 2.2 Ом. Сила тока получилась меньше расчетной, поскольку контакты в макетке не идеальны и добавляют сопротивления.

Следующий драйвер является импульсным понижающим. Собран он на микросхеме QX5241 .


Схема также проста, но состоит из чуть большего количества деталей и здесь уже без изготовления печатной платы не обойтись. Кроме того сама микросхема QX5241 выполнена в достаточно мелком корпусе SOT23-6 и требует внимания при пайке.

Входное напряжение не должно превышать 36В, максимальный ток стабилизации – 3А. Входной конденсатор С1 может быть любым – электролитическим, керамическим или танталовым. Его емкость – до 100мкФ, максимальное рабочее напряжение – не менее чем в 2 раза больше, чем входное. Конденсатор С2 керамический. Конденсатор С3 – керамический, емкость 10мкФ, напряжение – не менее чем в 2 раза больше, чем входное. Резистор R1 должен иметь мощность не менее чем 1Вт. Его сопротивление рассчитывается по формуле R1 = 0.2 / I, где I – требуемый ток драйвера. Резистор R2 - любой сопротивлением 20-100кОм. Диод Шоттки D1 должен с запасом выдерживать обратное напряжение – не менее чем в 2 раза по значению больше входного. И рассчитан должен быть на ток не менее требуемого тока драйвера. Один из важнейших элементов схемы – полевой транзистор Q1. Это должен быть N-канальный полевик с минимально возможным сопротивлением в открытом состоянии, безусловно, он должен с запасом выдерживать входное напряжение и нужную силу тока. Хороший вариант – полевые транзисторы SI4178, IRF7201 и др. Дроссель L1 должен иметь индуктивность 20-40мкГн и максимальный рабочий ток не менее требуемого тока драйвера.

Количество деталей этого драйвера совсем небольшое, все они имеют компактный размер. В итоге может получиться достаточно миниатюрный и, вместе с тем, мощный драйвер. Это импульсный драйвер, его КПД существенно выше, чем у линейных драйверов. Тем не менее, рекомендуется подбирать входное напряжение всего на 2-3В больше, чем падение напряжения на светодиодах. Драйвер интересен еще и тем, что выход 2 (DIM) микросхемы QX5241 может быть использован для диммирования – регулирования силы тока драйвера и, соответственно, яркости свечения светодиода. Для этого на этот выход нужно подавать импульсы (ШИМ) с частотой до 20КГц. С этим сможет справиться любой подходящий микроконтроллер. В итоге может получиться драйвер с несколькими режимами работы.

(13 оценок, средняя 4.58 из 5)