Диаграмме информационные потоки равномерно. Пример построения DFD модели. Построение иерархии диаграмм потоков данных

Диаграммы потоков данных (Data Flow Diagrams - DFD) представляют собой иерархию функциональных процессов, связанных потоками данных. Цель такого представления - продемонстрировать, как каждый процесс преобразует свои входные данные в выходные, а также выявить отношения между этими процессами.

Для построения DFD традиционно используются две различные нотации, соответствующие методам Йордона-ДеМарко и Гейна-Сэрсона. Эти нотации незначительно отличаются друг от друга графическим изображением символов (далее в примерах используется нотация Гейна-Сэрсона).

В соответствии с данным методом модель системы определяется как иерархия диаграмм потоков данных, описывающих асинхронный процесс преобразования информации от ее ввода в систему до выдачи потребителю. Источники информации (внешние сущности) порождают информационные потоки (потоки данных), переносящие информацию к подсистемам или процессам. Те, в свою очередь, преобразуют информацию и порождают новые потоки, которые переносят информацию к другим процессам или подсистемам, накопителям данных или внешним сущностям - потребителям информации.

Диаграммы верхних уровней иерархии (контекстные диаграммы) определяют основные процессы или подсистемы с внешними входами и выходами. Они детализируются при помощи диаграмм нижнего уровня. Такая декомпозиция продолжается, создавая многоуровневую иерархию диаграмм, до тех пор, пока не будет достигнут уровень декомпозиции, на котором детализировать процессы далее не имеет смысла.

Состав диаграмм потоков данных

Основными компонентами диаграмм потоков данных являются: внешние сущности; системы и подсистемы; процессы; накопители данных; потоки данных.

Внешняя сущность представляет собой материальный объект или физическое лицо, являющиеся источником или приемником информации, например, заказчики, персонал, поставщики, клиенты, склад. Определение некоторого объекта или системы в качестве внешней сущности указывает на то, что она находится за пределами границ анализируемой системы. В процессе анализа некоторые внешние сущности могут быть перенесены внутрь диаграммы анализируемой системы, если это необходимо, или, наоборот, часть процессов может быть вынесена за пределы диаграммы и представлена как внешняя сущность.

Внешняя сущность обозначается квадратом (Рис. 1), расположенным над диаграммой и бросающим на нее тень для того, чтобы можно было выделить этот символ среди других обозначений.

Рисунок 1. Графическое изображение внешней сущности

При построении модели сложной системы она может быть представлена в самом общем виде на так называемой контекстной диаграмме в виде одной системы как единого целого, либо может быть декомпозирована на ряд подсистем. Подсистема (или система) на контекстной диаграмме изображается так, как она представлена на Рис. 2.

Рисунок 2. Подсистема по работе с физическими лицами (ГНИ - Государственная налоговая инспекция)

Номер подсистемы служит для ее идентификации. В поле имени вводится наименование подсистемы в виде предложения с подлежащим и соответствующими определениями и дополнениями.

Процесс представляет собой преобразование входных потоков данных в выходные в соответствии с определенным алгоритмом. Физически процесс может быть реализован различными способами: это может быть подразделение организации (отдел), выполняющее обработку входных документов и выпуск отчетов, программа, аппаратно реализованное логическое устройство и т.д. Процесс на диаграмме потоков данных изображается, как показано на Рис. 3.

Рисунок 3. Графическое изображение процесса

Номер процесса служит для его идентификации. В поле имени вводится наименование процесса в виде предложения с активным недвусмысленным глаголом в неопределенной форме (вычислить, рассчитать, проверить, определить, создать, получить), за которым следуют существительные в винительном падеже, например: "Ввести сведения о налогоплательщиках", "Выдать информацию о текущих расходах", "Проверить поступление денег". Информация в поле физической реализации показывает, какое подразделение организации, программа или аппаратное устройство выполняет данный процесс.

Накопитель данных - это абстрактное устройство для хранения информации, которую можно в любой момент поместить в накопитель и через некоторое время извлечь, причем способы помещения и извлечения могут быть любыми. Накопитель данных может быть реализован физически в виде микрофиши, ящика в картотеке, таблицы в оперативной памяти, файла на магнитном носителе и т.д. Накопитель данных на диаграмме потоков данных изображается, как показано на Рис. 4.

Рисунок 4. Графическое изображение накопителя данных

Накопитель данных идентифицируется буквой "D" и произвольным числом. Имя накопителя выбирается из соображения наибольшей информативности для проектировщика. Накопитель данных в общем случае является прообразом будущей базы данных, и описание хранящихся в нем данных должно соответствовать модели данных.

Поток данных определяет информацию, передаваемую через некоторое соединение от источника к приемнику. Реальный поток данных может быть информацией, передаваемой по кабелю между двумя устройствами, пересылаемыми по почте письмами, магнитными лентами или дискетами, переносимыми с одного компьютера на другой и т.д.

Поток данных на диаграмме изображается линией, оканчивающейся стрелкой, которая показывает направление потока (Рис. 5).

Каждый поток данных имеет имя, отражающее его содержание.

Рисунок 5. Поток данных

Построение иерархии диаграмм потоков данных

Главная цель построения иерархии DFD заключается в том, чтобы сделать описание системы ясным и понятным на каждом уровне детализации, а также разбить его на части с точно определенными отношениями между ними. Для достижения этого целесообразно пользоваться следующими рекомендациями:

Размещать на каждой диаграмме от 3 до 6-7 процессов (аналогично SADT). Верхняя граница соответствует человеческим возможностям одновременного восприятия и понимания структуры сложной системы с множеством внутренних связей, нижняя граница выбрана по соображениям здравого смысла: нет необходимости детализировать процесс диаграммой, содержащей всего один или два процесса.

Не загромождать диаграммы несущественными на данном уровне деталями.

Декомпозицию потоков данных осуществлять параллельно с декомпозицией процессов. Эти две работы должны выполняться одновременно, а не одна после завершения другой.

Выбирать ясные, отражающие суть дела имена процессов и потоков, при этом стараться не использовать аббревиатуры.

Первым шагом при построении иерархии DFD является построение контекстных диаграмм. Обычно при проектировании относительно простых систем строится единственная контекстная диаграмма со звездообразной топологией, в центре которой находится так называемый главный процесс, соединенный с приемниками и источниками информации, посредством которых с системой взаимодействуют пользователи и другие внешние системы. Перед построением контекстной DFD необходимо проанализировать внешние события (внешние сущности), оказывающие влияние на функционирование системы. Количество потоков на контекстной диаграмме должно быть по возможности небольшим, поскольку каждый из них может быть в дальнейшем разбит на несколько потоков на следующих уровнях диаграммы.

Для проверки контекстной диаграммы можно составить список событий. Список событий должен состоять из описаний действий внешних сущностей (событий) и соответствующих реакций системы на события. Каждое событие должно соответствовать одному или более потокам данных: входные потоки интерпретируются как воздействия, а выходные потоки - как реакции системы на входные потоки.

Для сложных систем (признаками сложности могут быть наличие большого количества внешних сущностей (десять и более), распределенная природа системы или ее многофункциональность) строится иерархия контекстных диаграмм. При этом контекстная диаграмма верхнего уровня содержит не единственный главный процесс, а набор подсистем, соединенных потоками данных. Контекстные диаграммы следующего уровня детализируют контекст и структуру подсистем. Для каждой подсистемы, присутствующей на контекстных диаграммах, выполняется ее детализация при помощи DFD. Это можно сделать путем построения диаграммы для каждого события. Каждое событие представляется в виде процесса с соответствующими входными и выходными потоками, накопителями данных, внешними сущностями и ссылки на другие процессы для описания связей между этим процессом и его окружением. Затем все построенные диаграммы сводятся в одну диаграмму нулевого уровня.

Каждый процесс на DFD, в свою очередь, может быть детализирован при помощи DFD или (если процесс элементарный) спецификации. Спецификация процесса должна формулировать его основные функции таким образом, чтобы в дальнейшем специалист, выполняющий реализацию проекта, смог выполнить их или разработать соответствующую программу.

Спецификация является конечной вершиной иерархии DFD. Решение о завершении детализации процесса и использовании спецификации принимается аналитиком исходя из следующих критериев:

Наличия у процесса относительно небольшого количества входных и выходных потоков данных (2-3 потока);

Возможности описания преобразования данных процессов в виде последовательного алгоритма;

Выполнения процессом единственной логической функции преобразования входной информации в выходную;

Возможности описания логики процесса при помощи спецификации небольшого объема (не более 20-30 строк).

Спецификации представляют собой описания алгоритмов задач, выполняемых процессами. Они содержат номер и/или имя процесса, списки входных и выходных данных и тело (описание) процесса, являющееся спецификацией алгоритма или операции, трансформирующей входные потоки данных в выходные. Языки спецификаций могут варьироваться от структурированного естественного языка или псевдокода до визуальных языков моделирования.

Структурированный естественный язык применяется для понятного, достаточно строгого описания спецификаций процессов. При его использовании приняты следующие соглашения:

Логика процесса выражается в виде комбинации последовательных конструкций, конструкций выбора и итераций;

Глаголы должны быть активными, недвусмысленными и ориентированными на целевое действие (заполнить, вычислить, извлечь, а не модернизировать, обработать);

Логика процесса должна быть выражена четко и недвусмысленно.

При построении иерархии DFD переходить к детализации процессов следует только после определения содержания всех потоков и накопителей данных, которое описывается при помощи структур данных. Для каждого потока данных формируется список всех его элементов данных, затем элементы данных объединяются в структуры данных, соответствующие более крупным объектам данных (например, строкам документов или объектам предметной области). Каждый объект должен состоять из элементов, являющихся его атрибутами. Структуры данных могут содержать альтернативы, условные вхождения и итерации. Условное вхождение означает, что данный компонент может отсутствовать в структуре (например, структура "данные о страховании" для объекта "служащий"). Альтернатива означает, что в структуру может входить один из перечисленных элементов. Итерация означает вхождение любого числа элементов в указанном диапазоне (например, элемент "имя ребенка" для объекта "служащий"). Для каждого элемента данных может указываться его тип (непрерывные или дискретные данные). Для непрерывных данных могут указываться единица измерения, диапазон значений, точность представления и форма физического кодирования. Для дискретных данных может указываться таблица допустимых значений.

После построения законченной модели системы ее необходимо верифицировать (проверить на полноту и согласованность). В полной модели все ее объекты (подсистемы, процессы, потоки данных) должны быть подробно описаны и детализированы. Выявленные недетализированные объекты следует детализировать, вернувшись на предыдущие шаги разработки. В согласованной модели для всех потоков данных и накопителей данных должно выполняться правило сохранения информации: все поступающие куда-либо данные должны быть считаны, а все считываемые данные должны быть записаны.

При моделировании бизнес-процессов диаграммы потоков данных (DFD) используются для построения моделей "AS-IS" и "AS-TO-BE", отражая, таким образом, существующую и предлагаемую структуру бизнес-процессов организации и взаимодействие между ними. При этом описание используемых в организации данных на концептуальном уровне, независимом от средств реализации базы данных, выполняется с помощью модели "сущность-связь".

Ниже перечислены основные виды и последовательность работ при построении бизнес-моделей с использованием методики Йордона:

1. Описание контекста процессов и построение начальной контекстной диаграммы.

Начальная контекстная диаграмма потоков данных должна содержать нулевой процесс с именем, отражающим деятельность организации, внешние сущности, соединенные с нулевым процессом посредством потоков данных. Потоки данных соответствуют документам, запросам или сообщениям, которыми внешние сущности обмениваются с организацией.

2. Спецификация структур данных.

Определяется состав потоков данных и готовится исходная информация для построения концептуальной модели данных в виде структур данных. Выделяются все структуры и элементы данных типа "итерация", "условное вхождение" и "альтернатива". Простые структуры и элементы данных объединяются в более крупные структуры. В результате для каждого потока данных должна быть сформирована иерархическая (древовидная) структура, конечные элементы (листья) которой являются элементами данных, узлы дерева являются структурами данных, а верхний узел дерева соответствует потоку данных в целом.

3. Построение начального варианта концептуальной модели данных. Для каждого класса объектов предметной области выделяется сущность. Устанавливаются связи между сущностями и определяются их характеристики. Строится диаграмма "сущность-связь" (без атрибутов сущностей).

4. Построение диаграмм потоков данных нулевого и последующих уровней.

Для завершения анализа функционального аспекта деятельности организации детализируется (декомпозируется) начальная контекстная диаграмма.

При этом можно построить диаграмму для каждого события, поставив ему в соответствие процесс и описав входные и выходные потоки, накопители данных, внешние сущности и ссылки на другие процессы для описания связей между этим процессом и его окружением. После этого все построенные диаграммы сводятся в одну диаграмму нулевого уровня.

Процессы разделяются на группы, которые имеют много общего (работают с одинаковыми данными и/или имеют сходные функции). Они изображаются вместе на диаграмме более низкого (первого) уровня, а на диаграмме нулевого уровня объединяются в один процесс. Выделяются накопители данных, используемые процессами из одной группы.

Декомпозируются сложные процессы и проверяется соответствие различных уровней модели процессов.

Накопители данных описываются посредством структур данных, а процессы нижнего уровня - посредством спецификаций.

5. Уточнение концептуальной модели данных.

Определяются атрибуты сущностей. Выделяются атрибуты-идентификаторы. Проверяются связи, выделяются (при необходимости) связи "супертип-подтип". Проверяется соответствие между описанием структур данных и концептуальной моделью (все элементы данных должны присутствовать на диаграмме в качестве атрибутов).

Материал из ПИЭ.Wiki

DFD (Data Flow Diagramming) - это стандарт моделирования, в котором система представляется в виде сети работ, соединенных между собой объектами, взаимодействующими с результатами данных работ. Сфера применения DFD находится в области моделирования информационных потоков организации. В этой нотации моделируется не последовательность работ, а именно потоки информации (данных) между работами и объектами, которые используют, хранят или "рождают" эти данные.

В соответствии с DFD (Data Flow Diagram) методологией, модель системы определяется как иерархия диаграмм потоков данных, описывающих процессы преобразования информации от момента ее ввода в систему до выдачи конечному пользователю. Диаграммы верхних уровней иерархии - контекстные диаграммы, задают границы модели, определяя её окружение (внешние входы и выходы) и основные рассматриваемые процессы. Контекстные диаграммы детализируются при помощи диаграмм следующих уровней.

Основными элементами диаграмм потоков данных являются :

внешние сущности;

процессы;

накопители данных;

потоки данных.

Внешние сущности

Под внешней сущностью (External Entity) понимается материальный объект, являющийся источником или приемником информации. В качестве внешней сущности на DFD диаграмме могут выступать заказчики, поставщики, клиенты, склад, банк и другие. К сожалению, DFD методология не оформлена как стандарт. По этой причине в диаграммах потоков данных используются различные условные обозначения. На рисунке 1 показаны символы внешних сущностей, используемые в нотациях «Yourdon and Coad Process Notation» и «Gane and Sarson Process Notation».

Определение некоторого объекта в качестве внешней сущности указывает на то, что он находится за пределами границ анализируемой информационной системы.

Процессы

Процессы представляют собой преобразование входных потоков данных в выходные в соответствии с определенным алгоритмом. В реальной жизни процесс может выполняться некоторым подразделением организации, выполняющим обработку входных документов и выпуск отчетов, отдельным сотрудником, программой, установленной на компьютере, специальным логическим устройством и тому подобное.

Накопители данных

Накопители данных предназначены для изображения неких абстрактных устройств для хранения информации, которую можно туда в любой момент времени поместить или извлечь, безотносительно к их конкретной физической реализации.

Накопители данных являются неким прообразом базы данных информационной системы организации.

Внутри символа указывается его уникальное в рамках данной модели имя, наиболее точно, с точки зрения аналитика, отражающее информационную сущность содержимого, например, «Поставщики», «Заказчики», «Счета-фактуры», «Накладные». Символы накопителей данных в качестве дополнительных элементов идентификации могут содержать порядковые номера.

Потоки данных

Поток данных определяет информацию, передаваемую через некоторое соединение (кабель, почтовая связь, курьер) от источника к приемнику. На DFD диаграммах потоки данных изображаются линиями со стрелками, показывающими их направление. Каждому потоку данных присваивается имя, отражающее его содержание.

В DFD используются следующие типы объектов: · работа (activity) - синоним работе в IDEF0 и IDEF3; · внешняя сущность (external entity) - объекты - источники/получатели информации/данных, изменяемых или используемых в данной функции. · стрелка (data flow) - обозначение потока информации (данных); · data store (хранилище данных) - любой механизм или абстракция (например, запись в базе данных), в которой хранятся данные. Потоки данных между работами в DFD возможны не только опосредованно, через хранилища данных, но и непосредственно между работами, если данные не поступают сначала в хранилище. Нотации IDEF0, IDEF3 и DFD могут быть последовательно использованы при все более и более глубокой проработке модели организации, завершающим этапом которой может быть детальное описание бизнес-процессов и информационной системы организации

Построение иерархии диаграмм потоков данных

Первым шагом при построении иерархии ДПД является построение контекстных диаграмм. Обычно при проектировании относительно простых ИС строится единственная контекстная диаграмма со звездообразной топологией, в центре которой находится так называемый главный процесс, соединенный с приемниками и источниками информации, посредством которых с системой взаимодействуют пользователи и другие внешние системы.

Если же для сложной системы ограничиться единственной контекстной диаграммой, то она будет содержать слишком большое количество источников и приемников информации, которые трудно расположить на листе бумаги нормального формата, и кроме того, единственный главный процесс не раскрывает структуры распределенной системы. Признаками сложности (в смысле контекста) могут быть: наличие большого количества внешних сущностей (десять и более); распределенная природа системы; многофункциональность системы с уже сложившейся или выявленной группировкой функций в отдельные подсистемы.

Для сложных ИС строится иерархия контекстных диаграмм. При этом контекстная диаграмма верхнего уровня содержит не единственный главный процесс, а набор подсистем, соединенных потоками данных. Контекстные диаграммы следующего уровня детализируют контекст и структуру подсистем.

Иерархия контекстных диаграмм определяет взаимодействие основных функциональных подсистем проектируемой ИС как между собой, так и с внешними входными и выходными потоками данных и внешними объектами (источниками и приемниками информации), с которыми взаимодействует ИС.

Разработка контекстных диаграмм решает проблему строгого определения функциональной структуры ИС на самой ранней стадии ее проектирования, что особенно важно для сложных многофункциональных систем, в разработке которых участвуют разные организации и коллективы разработчиков.

После построения контекстных диаграмм полученную модель следует проверить на полноту исходных данных об объектах системы и изолированность объектов (отсутствие информационных связей с другими объектами).

Для каждой подсистемы, присутствующей на контекстных диаграммах, выполняется ее детализация при помощи ДПД. Каждый процесс на ДПД, в свою очередь, может быть детализирован при помощи ДПД или миниспецификации. При детализации должны выполняться следующие правила: правило балансировки - означает, что при детализации подсистемы или процесса детализирующая диаграмма в качестве внешних источников/приемников данных может иметь только те компоненты (подсистемы, процессы, внешние сущности, накопители данных), с которыми имеет информационную связь детализируемая подсистема или процесс на родительской диаграмме; правило нумерации - означает, что при детализации процессов должна поддерживаться их иерархическая нумерация. Например, процессы, детализирующие процесс с номером 12, получают номера 12.1, 12.2, 12.3 и т.д.

Миниспецификация (описание логики процесса) должна формулировать его основные функции таким образом, чтобы в дальнейшем специалист, выполняющий реализацию проекта, смог выполнить их или разработать соответствующую программу.

Миниспецификация является конечной вершиной иерархии ДПД. Решение о завершении детализации процесса и использовании миниспецификации принимается аналитиком исходя из следующих критериев: наличия у процесса относительно небольшого количества входных и выходных потоков данных (2-3 потока); возможности описания преобразования данных процессом в виде последовательного алгоритма; выполнения процессом единственной логической функции преобразования входной информации в выходную; возможности описания логики процесса при помощи миниспецификации небольшого объема (не более 20-30 строк).

При построении иерархии ДПД переходить к детализации процессов следует только после определения содержания всех потоков и накопителей данных, которое описывается при помощи структур данных. Структуры данных конструируются из элементов данных и могут содержать альтернативы, условные вхождения и итерации. Условное вхождение означает, что данный компонент может отсутствовать в структуре. Альтернатива означает, что в структуру может входить один из перечисленных элементов. Итерация означает вхождение любого числа элементов в указанном диапазоне. Для каждого элемента данных может указываться его тип (непрерывные или дискретные данные). Для непрерывных данных может указываться единица измерения (кг, см и т.п.), диапазон значений, точность представления и форма физического кодирования. Для дискретных данных может указываться таблица допустимых значений.

После построения законченной модели системы ее необходимо верифицировать (проверить на полноту и согласованность). В полной модели все ее объекты (подсистемы, процессы, потоки данных) должны быть подробно описаны и детализированы. Выявленные недетализированные объекты следует детализировать, вернувшись на предыдущие шаги разработки. В согласованной модели для всех потоков данных и накопителей данных должно выполняться правило сохранения информации: все поступающие куда-либо данные должны быть считаны, а все считываемые данные должны быть записаны.

Диаграммы потоков данных (ОТО) являются основным средством моделирования функциональных требований к проектируемой системе. С их помощью требования представляются в виде иерархии функциональных компонентов (процессов), связанных потоками данных. Главная цель такого представления - продемонстрировать, как каждый процесс преобразует свои входные данные в выходные, а также выявить отношения между этими процессами.

Для построения ЭГО-диаграмм используются две различные нотации, соответствующие методам Иордана и Гейна-Сэрсона, которые незначительно отличаются графическими изображениями символов. Далее при построении примеров будет использоваться нотация Гейна-Сэрсона. Построение БРЭ-диаграмм в основном ассоциируется с разработкой программных систем, и нотация ЭРЭ изначально была разработана для этих целей.

В соответствии с данными методами модель системы определяется как иерархия потоков данных, описывающих асинхронный процесс преобразования информации от ее входа в систему до выдачи пользователю. Диаграммы верхних уровней иерархии (контекстные диаграммы) определяют основные процессы или подсистемы с внешними входами и выходами. Они детализируются при помощи диаграмм нижнего уровня. Такая декомпозиция продолжается, создавая многоуровневую иерархию диаграмм, до тех пор, пока не будет достигнут такой уровень декомпозиции, на котором процессы становятся элементарными, так что детализировать их далее невозможно.

Источники информации (внешние сущности) порождают информационные потоки (потоки данных ), переносящие информацию к подсистемам или процессам. Те, в свою очередь, преобразуют информацию и порождают новые потоки, которые переносят информацию к другим процессам или подсистемам, накопителям данных или внешним сущностям - потребителям информации.

Основными компонентами ОГБ-диаграмм являются:

  • внешние сущности;
  • системы и подсистемы;
  • накопители данных;
  • потоки данных.

Внешние сущности представляют собой материальные объекты или физическое лицо, являющее собой источник или приемник информации, например заказчика, персонала, поставщика, клиента, склад. Определение некоторого объекта или системы в качестве внешней сущности указывает на то, что они находятся за пределами границ анализируемой системы. В процессе анализа некоторые внешние сущности могут быть перенесены внутрь диаграммы анализируемой системы, если это необходимо, или, наоборот, часть процессов может быть вынесена за пределы диаграммы и представлена как внешняя сущность.

Внешняя сущность обозначается квадратом (рис. 5.12), расположенным как бы над диаграммой и бросающим тень для того, чтобы можно было выделить символ среди других обозначений. При построении модели сложной программной системы она может быть представлена в самом общем виде на так называемой контекстной диаграмме в виде од-

ной системы как единого целого либо может быть декомпозирована на несколько подсистем (рис. 5.13).

Рис. 5.12.

Идентификатор

Поленомера

Полеимени Поле

физической

реализации

Рис. 5.13. Контекстная диаграмма

Номер подсистемы служит для ее идентификации. В поле имени вводится наименование подсистемы в форме предложения с подлежащим и соответствующими определениями и дополнениями.

Процесс представляет собой преобразование входных потоков данных в выходные в соответствии с определенным алгоритмом. Физически процесс может быть реализован различными способами: это может быть подразделение (отдел) организации, выполняющее определенную обработку входных документов и выпуск отчетов, программа, аппаратно реализованное физическое устройство и т.д. Процесс на диаграмме изображается в виде прямоугольника с закругленными углами (рис. 5.14).

Поле номера

Поле имени Поле

физической

реализации

Рис. 5.14. Изображение процесса

Номер процесса служит для ее идентификации. В поле имени вводится наименование процесса в виде предложения с активным недвусмысленным глаголом в неопределенной форме («вычислить», «проверить», «рассчитать», «создать» и т.п.), за которым следует существительное в винительном падеже (рис. 5.14). Использование таких глаголов, как «обработать», «модернизировать» или «отредактировать», означает недостаточно глубокое понимание данного процесса и требует дальнейшего анализа. Информация в поле физической реализации показывает, какое подразделение, программа или устройство выполняет данный процесс.

Накопитель данных - это абстрактное устройство для хранения информации, которую можно в любой момент поместить в накопитель и через некоторое время извлечь, причем способы помещения и извлечения могут быть любыми. Накопитель данных (хранилище) может быть реализован физически в форме таблицы в оперативной памяти, файла на магнитном диске, ящика в картотеке и т.д. Накопитель данных на диаграмме идентифицируется буквой И и произвольным числом. Имя накопителя выбирается из соображений наибольшей информативности для проектировщика (рис. 5.15).

идентификации

Поле имени

Рис. 5.15. Изображение накопителя данных

Накопитель данных в общем случае является прообразом будущей базы данных, описание хранящихся в нем данных должно быть увязано с информационной моделью (ЕЯИ). Поток данных изображается стрелкой и описывает передвижение информации от источника к приемнику. Реально это может быть информация, передаваемая по кабелю между двумя устройствами, пересылаемые по почте письма, дискеты, перемещаемые с одного компьютера на другой и т.д. Каждый поток имеет имя, отражающее его содержание (рис. 5.16).

Сформировать отчетность по подоходному налогу

отчетности

Отчетность по

подоходном у налогу

Рис. 5.16.

Ссылки на ПБП-диаграммах могут быть разбиты (разветвлены) на части, при этом каждый получившийся сегмент может быть переименован таким образом, чтобы показать декомпозицию данных, переносимых некоторым потоком (рис. 5.17). Стрелки могут соединяться между собой (объединяться) для формирования комплексных объектов. Например, чтобы сформировать адрес налогоплательщика, необходимо иметь данные о его элементах (индексе, городе, улице, номере дома и номере квартиры).

Записать адрес налогоплательщика

Отдел учета налогоплательщиков

Рис. 5.17.

При использовании ОРЭ-диаграмм с целью моделирования функциональных требований, предъявляемых к программной системе, для ясности их понимания и удобства работы проектировщика строят иерархию диаграмм. При этом целесообразно выполнять следующие рекомендации :

  • размещать на каждой диаграмме от 3 до 6-7 процессов;
  • не загромождать диаграммы несущественными на данном уровне деталями;
  • декомпозицию потоков данных осуществлять параллельно с декомпозицией процессов;
  • выбирать ясные, отражающие суть дела имена процессов и потоков, стараясь не использовать аббревиатуры.

Первым шагом при построении иерархии диаграмм потоков данных является построение контекстных диаграмм, показывающих, как проектируемая система будет взаимодействовать с пользователями и другими внешними системами (некоторый аналог вариантов использования в объектно ориентированном подходе). При проектировании относительно простых систем достаточно одной контекстной диаграммы, имеющей звездную топологию, в центре которой располагается основной процесс, соединенный с источниками и приемниками информации.

Для сложных систем строится иерархия контекстных диаграмм, которая определяет взаимодействие основных функциональных подсистем проектируемой системы как между собой, так и с внешними входными и выходными потоками данных и внешними объектами. При этом контекстная диаграмма верхнего уровня содержит набор подсистем, соединенных потоками данных. Контекстные диаграммы следующего уровня детализируют содержимое и структуру подсистем.

После построения контекстных диаграмм полученную модель надо проверить на полноту исходных данных об объектах системы и изолированность объектов (отсутствие информационных связей с другими объектами). Для каждой подсистемы, присутствующей на контекстных диаграммах, выполняется ее детализация при помощи БРЭ-диаграмм. Каждое событие представляется в виде процесса с соответствующими входными и выходными потоками, накопителями данных, внешними сущностями ссылками на другие процессы для описания связей между этим процессом и его окружением.

Каждый процесс на ЙГО-диаграмме, в свою очередь, может быть детализирован при помощи ЭРЭ или (если процесс элементарный) спецификации. При детализации должны соблюдаться следующие правила:

  • правило балансировки, означающее, что при детализации подсистемы можно использовать только те компоненты (подсистемы, процессы, внешние сущности, накопители данных), с которыми она имеет связь на родительской диаграмме;
  • правило нумерации, заключающееся в том, что при детализации процессов должна поддерживаться их иерархическая нумерация.

Спецификация процесса должна формулировать его основные функции таким образом, чтобы в дальнейшем специалист, выполняющий реализацию проекта, смог выполнить их или разработать соответствующую программу. Спецификация является конечной вершиной иерархии .О/ 7 /). Решение о завершении детализации процесса и использование спецификации принимается аналитиком, исходя из следующих критериев :

  • наличие у процесса небольшого количества входных и выходных данных (2-3 потока);
  • возможности описания преобразования данных процессом в виде последовательного алгоритма;
  • выполнение процессом единственной логической функции преобразования входной информации в выходную;
  • возможности описания логики процесса при помощи спецификации небольшого объема (не более 20-30 строк).

Спецификации должны удовлетворять следующим требованиям:

  • для каждого процесса нижнего уровня должна существовать одна (и только одна) спецификация;
  • спецификация должна определять способ преобразования входных потоков в выходные;
  • нет необходимости (по крайней мере, на стадии формирования требований) определять метод реализации этого преобразования;
  • спецификация должна стремиться к ограничению избыточности: не следует переопределять то, что уже было определено на диаграмме;
  • набор конструкций для построения спецификаций должен быть простым и понятным.

Фактически спецификация представляет собой описание алгоритмов задач, выполняемых процессами. Спецификации содержат номер и (или) имя процесса, списки входных и выходных данных и тело (описание) процесса, являющееся спецификацией алгоритма или операции, трансформирующей входные потоки данных в выходные. Известно большое количество разнообразных методов, позволяющих описать тело процесса. Соответствующие этим методам языки могут варьироваться от структурированного естественного языка, или псевдокода, до языков визуального проектирования.

Структурированный естественный язык применяется для читабельного, достаточно строгого описания спецификаций процессов. Такой язык состоит из подмножества слов, организованных в определенные логические структуры, арифметических выражений и диаграмм. К управляющим структурам языка относятся последовательная конструкция, конструкция выбора и итерация (цикл).

При использовании структурированного естественного языка приняты следующие соглашения:

  • логика процесса выражается в виде комбинации последовательных конструкций, конструкций выбора и итераций;
  • глаголы должны быть активными, недвусмысленными и ориентированными на целевое действие (например, «заполнить», «вычислить», «извлечь», а не «модернизировать», «обработать»);
  • логика процесса должна быть выражена четко и недвусмысленно.

При построении иерархии диаграмм потоков данных переходить

к детализации процессов следует только после определения структур данных, которые описывают содержание всех потоков и накопителей данных. Структуры данных могут содержать альтернативы, условные вхождения и итерации. Альтернатива означает, что в структуру может входить один из перечисленных элементов. Условное вхождение показывает, что данный компонент может отсутствовать в структуре. Итерация предусматривает вхождение любого числа элементов из указанного диапазона.

Для каждого элемента может указываться его тип (непрерывный или дискретный). Для непрерывных данных могут указываться единица измерения, диапазон значений, точность представления и форма физического кодирования. Для дискретных данных может указываться таблица допустимых значений.

После построения законченной модели системы ее необходимо верифицировать (проверить на полноту и согласованность). В полной модели все ее объекты (подсистемы, процессы, потоки данных) должны быть подробно описаны и детализированы. В согласованной модели для всех потоков данных и накопителей данных должно выполняться правило сохранения информации: все поступающие куда-либо данные должны быть считаны, а все считываемые данные должны быть записаны.

Пояснительная записка

по дисциплине

« Информационные технологии проектирования

радиоэлектронных средств»

Тема: «Использование технологии DFD»

Выполнил: студент гр. 4141 Понкин Д.О.

Руководитель: доцент Колуков В.В.

Дубна, 2012

Введение. 3

Состав диаграмм потоков данных. 3

Построение иерархии диаграмм потоков данных. 6

Пример построение DFD-диаграммы.. 8

Выводы.. 10

Список литературы.. 11

Введение

Диаграммы потоков данных (Data Flow Diagrams - DFD) представляют собой иерархию функциональных процессов, связанных потоками данных . Цель такого представления - продемонстрировать, как каждый процесс преобразует свои входные данные в выходные, а также выявить отношения между этими процессами.

Для построения DFD традиционно используются две различные нотации, соответствующие методам Йордона-ДеМарко и Гейна-Сэрсона. Эти нотации незначительно отличаются друг от друга графическим изображением символов (далее в примерах используется нотация Гейна-Сэрсона).

В соответствии с данным методом модель системы определяется как иерархия диаграмм потоков данных, описывающих асинхронный процесс преобразования информации от ее ввода в систему до выдачи потребителю .

Источники информации (внешние сущности) порождают информационные потоки (потоки данных), переносящие информацию к подсистемам или процессам. Те, в свою очередь, преобразуют информацию и порождают новые потоки, которые переносят информацию к другим процессам или подсистемам, накопителям данных или внешним сущностям - потребителям информации.

Диаграммы верхних уровней иерархии (контекстные диаграммы) определяют основные процессы или подсистемы с внешними входами и выходами. Они детализируются при помощи диаграмм нижнего уровня. Такая декомпозиция продолжается, создавая многоуровневую иерархию диаграмм, до тех пор, пока не будет достигнут уровень декомпозиции, на котором детализировать процессы далее не имеет смысла.

Состав диаграмм потоков данных

Основными компонентами диаграмм потоков данных являются:

внешние сущности;

системы и подсистемы;

процессы (работы);

накопители данных;

потоки данных.

Внешняя сущность представляет собой материальный объект или физическое лицо, являющиеся источником или приемником информации, например, заказчики, персонал, поставщики, клиенты, склад. Определение некоторого объекта или системы в качестве внешней сущности указывает на то, что она находится за пределами границ анализируемой системы. В процессе анализа некоторые внешние сущности могут быть перенесены внутрь диаграммы анализируемой системы, если это необходимо, или, наоборот, часть процессов может быть вынесена за пределы диаграммы и представлена как внешняя сущность.

Внешняя сущность обозначается квадратом (рис. 1), расположенным над диаграммой и бросающим на нее тень для того, чтобы можно было выделить этот символ среди других обозначений.

Рис. 1. Графическое изображение внешней сущности

При построении модели сложной системы она может быть представлена в самом общем виде на так называемой контекстной диаграмме в виде одной системы как единого целого, либо может быть декомпозирована на ряд подсистем.

Подсистема (или система) на контекстной диаграмме изображается так, как она представлена на рис. 2.

Рис. 2. Подсистема по работе с физическими лицами

(ГНИ - Государственная налоговая инспекция)

Номер подсистемы служит для ее идентификации. В поле имени вводится наименование подсистемы в виде предложения с подлежащим и соответствующими определениями и дополнениями.

Процесс представляет собой преобразование входных потоков данных в выходные в соответствии с определенным алгоритмом. Физически процесс может быть реализован различными способами: это может быть подразделение организации (отдел), выполняющее обработку входных документов и выпуск отчетов, программа, аппаратно реализованное логическое устройство и т.д.

Процесс на диаграмме потоков данных изображается, как показано на рис. 3.

Рис. 3. Графическое изображение процесса

Номер процесса служит для его идентификации. В поле имени вводится наименование процесса в виде предложения с активным недвусмысленным глаголом в неопределенной форме (вычислить, рассчитать, проверить, определить, создать, получить), за которым следуют существительные в винительном падеже, например: «Ввести сведения о налогоплательщиках», «Выдать информацию о текущих расходах», «Проверить поступление денег».

Информация в поле физической реализации показывает, какое подразделение организации, программа или аппаратное устройство выполняет данный процесс.

Накопитель данных - это абстрактное устройство для хранения информации, которую можно в любой момент поместить в накопитель и через некоторое время извлечь, причем способы помещения и извлечения могут быть любыми.

Накопитель данных может быть реализован физически в виде ящика в картотеке, таблицы в оперативной памяти, файла на магнитном носителе и т.д. Накопитель данных на диаграмме потоков данных изображается, как показано на рис. 4.

Рис. 4. Графическое изображение накопителя данных

Накопитель данных идентифицируется буквой «D» и произвольным числом. Имя накопителя выбирается из соображения наибольшей информативности для проектировщика.

Накопитель данных в общем случае является прообразом будущей базы данных, и описание хранящихся в нем данных должно соответствовать модели данных.

Поток данных определяет информацию, передаваемую через некоторое соединение от источника к приемнику. Реальный поток данных может быть информацией, передаваемой по кабелю между двумя устройствами, пересылаемыми по почте письмами, магнитными лентами или дискетами, переносимыми с одного компьютера на другой и т.д.

Поток данных на диаграмме изображается линией, оканчивающейся стрелкой, которая показывает направление потока (рис. 5). Каждый поток данных имеет имя, отражающее его содержание.

Общая концепция

Метод моделирования процессов - потоков данных (DFD)

DFD позволяют представить требования к проектируемой системе в виде иерархии функциональных компонентов (процессов), связанных потоками данных.

Цель такого представления – продемонстрировать, как каждый процесс преобразует свои входные данные в выходные, а также выявить отношения между этими процессами.

Пример . Америка 20-е годы. Консультант офиса обозначил кружком каждого клерка, а стрелкой – каждый документ, передаваемый между ними. Используя такую диаграмму, он предложил схему реорганизации, в соответствии с которой два клерка, обменивающихся множеством документов, были посажены рядом, а клерки с малым взаимодействием были посажены на большом расстоянии друг от друга. Так появился первый прототип DFD.

Для построения DFD используют две различные нотации, соответствующие методам Йордана и Гейна – Серсона. Далее в примерах будет использоваться более популярная сегодня нотация Гейна – Серсона.

Модель системы описывает асинхронный процесс преобразования информации. Декомпозиция контекстных диаграмм (диаграмм верхних уровней) продолжается, создавая многоуровневую иерархию диаграмм, до тех пор, пока не будет достигнут уровень декомпозиции, на котором процессы становятся элементарными и детализировать их далее невозможно.

Основными компонентами диаграмм потоков данных являются:

1. Внешние сущности.

2. Системы и подсистемы.

3. Процессы.

4. Накопители данных.

5. Потоки данных.

Внешняя сущность – материальный объект или физическое лицо, представляющее собой источник или приёмник информации (заказчики, поставщики, клиенты, склад и т.п.) На диаграммах потоков данных внешняя сущность обозначается квадратом, бросающим тень.

Системы и подсистемы являются элементами верхнего уровня декомпозиции и отображаются на контекстных диаграммах в виде единого целого.

Системы и подсистемы декомпозируются на процессы – компоненты диаграмм, предназначенные для преобразования входных потоков данных в выходные в соответствии с определённым алгоритмом.

Физически процесс может быть реализован различными способами: это может быть и подразделение организации, выполняющее обработку входных документов и выпуск отчётов, и программа, и аппаратно реализованное логическое устройство и т.д.

Использование на диаграммах таких глаголов, как «обработать», «модернизировать» или «отредактировать», означает недостаточно глубокое понимание данного процесса и требует дальнейшего анализа.

Накопитель данных – абстрактное устройство для хранения информации. Предполагается, что информацию в любой момент поместить в накопитель и через некоторое время извлечь, причём способы помещения и извлечения оттуда могут быть различны.


Физически накопитель данных может быть реализован в виде ящика в картотеке, таблицы в оперативной памяти, файлы на магнитном носителе и т.д.

На диаграмме потоков данных накопитель данных идентифицируется буквой «D» и произвольным числом. Имя накопителя выбирается из соображения наибольшей информативности для проектировщика. В общем случае накопитель данных является прообразом будущей БД, а описание хранящихся в нём данных должно быть указанно в соответствии с информационной моделью (ERD).

Поток данных определяет информацию, передаваемую через некоторое соединение от источника к приёмнику. Реальный поток данных может быть информацией, передаваемой по кабелю между двумя устройствами, пересылаемыми по почте письмами, магнитными лентами или дискетами, переносимыми с одного компьютера на другой, и т.д.

На диаграмме поток данных изображается линией, оканчивающейся стрелкой, которая показывает направление потока. Каждый поток данных имеет имя, отражающее её содержание.

При построении DFD-диаграмм принято пользоваться следующими рекомендациями:

1.Размещать на каждой диаграмме от 3 до 6÷7 процессов.

3. Стараться не использовать аббревиатуры.

4. Не загромождать диаграммы несущественными деталями.

9.3. Диаграммы «сущность-связь»

Нотация ERD для построения диаграмм «сущность-связь» включает девать основных компонентов.

Чаще всего информационные модели подобного типа применяются для проектирования структуры базы данных.