Что такое жесткий диск винчестер. Что такое HDD на вашем компьютере и какие у него бывают характеристики? Жёсткие диски по местоположению

Здравствуйте Друзья! Что такое жесткий диск или HDD? Жесткий диск это накопитель на жестких магнитных дисках. Сокращенно — НЖМД или hard (magnetic) disk drive — HDD или MHDD. Первый жесткий диск был выпущен компанией IBM в 1956 году имел габариты около одного метра кубического и был способен запомнить до 3.5 МБ информации (смотрите рисунок слева из википедии). В его состав входили 50 магнитных дисков диаметром 610 мм. Поверхность дисков была покрыта чистым железом, благодаря чему и была возможность намагничивать участки и запоминать данные. Этот жесткий диск весит 971 кг и входил в состав первого серийного компьютера IBM 305 RAMAC. Дальше технологии развивались и дошли до того, что вы видите в своих настольных ПК и ноутбуках . Жесткий диск так же называют хард, винчестер или сокращенно — винт. Название винчестер пошло их 70-х годов. В то время компания IBM выпустила новый компьютер с более современным жестким диском, который представлял из себя два шкафчика, каждый запоминал до 30 МБ информации. Была проведена аналогия с винтовкой Winchester, использовавшей патрон 30-30. Наверно, после этого за жесткими дисками, скорее всего навсегда (по крайней мере у русскоязычного населения), закрепилось название — винчестер или сокращенно — винт.

Современный жесткий диск состоит из:

  • корпуса
  • блока электроники
  • блока позиционирования актуатора
  • блока с магнитными пластинами

Рассмотрим каждый подробнее

Корпус . Это как кузов автомобиля. На нем все держится. Основная задача — обеспечивать необходимую жесткость и герметичность. Жесткость необходима для защиты диска от внешних повреждений. Герметичность — для исключения попадания посторонних частиц внутрь диска. Корпус изготавливается из тепло-проводящего сплава, так как при работе устройства выделяется тепло и его нужно как-то отводить. Подробнее об охлаждении HDD можно прочитать . Для выравнивания давлений снаружи и внутри корпуса делается маленькое окошко с гибкой металлической пластинкой.

Блок электроники

Состоит из:

  • интерфейсного блока
  • буфера или кэша
  • управляющего блока

Интерфейсный блок отвечает за связь жесткого диска с компьютером . В ПЗУ — постоянном запоминающем устройстве, записывается служебная информация и прошивка диска. Буфер — кэш память на подобии оперативной памяти . В нее помещается часто используемая информация, что увеличивает быстродействие HDD. Скорость чтения из кэша приближается к максимальной для интерфейса диска. На данный момент наиболее распространен интерфейс SATA III с максимальной пропускной способностью в 6 Гбит/с. Управляющий блок отвечает за функционирование всего устройства. Он следит за скоростью вращения блока с магнитными пластинами и положения блока с актуаторами.

Состоит из актуатора (устройство для записи и чтения информации), кронштейна (на котором все это работает) и привода. Привод получает команды где ему читать и куда записывать информацию от блока управления. (Рисунок ниже взят с сайта http://www.3dnews.ru/editorial/640707)

Блок с запоминающими пластинами . Состоит из привода, дисков или пластин и сепараторов. Последние служат для задания определенного расстояния между пластинами. Диски с сепараторами крепятся на приводе. Последний поддерживает постоянную скорость вращения.

2. Как работает жесткий диск?

При включении компьютера блок управления подает питание на привод с магнитными дисками и ждет пока последний не выйдет на заданную частоту вращения. Как только это происходит компьютер получает сигнал о готовности HDD. Далее идет запрос информации. В дело вступает блок позиционирования, который задает нужное положение актуатора. Данные считываются и попадают в интерфейсный блок, а от туда в оперативную память .

Раньше актуаторы касались магнитных дисков. С увеличением скорости последних потребовалось другая технология. При этом актуатор парил над магнитной поверхностью и касался в определенном месте диска. Технология пошла дальше, скорости вращение пластин выросли и блок с актуаторами стали парковать вне пластин. То есть актуаторы находятся рядом с пластинами пока не достигнута нужная скорость вращения магнитных дисков.

Благодаря высокой скорости вращения дисков создается воздушный поток, который поднимает головку актуатора над поверхностью. Этот же воздушный поток сдувает с поверхности попавшие внутрь пылинки на специальный фильтр в корпусе. Так же в корпусе имеется адсорбент для удаления остатков влаги.

В современных жестких дисках расстояние между считывающей головкой и поверхностью магнитной платины < 10 нм. Благодаря тому, что считывающие головки никогда не касаются магнитных пластин отсутствует трение и продлевается срок жизни HDD.

Каждая магнитная пластина разделена на кольцевые дорожки шириной около 60 нм. Последние в свою очередь поделены на кластеры. Обычно кластер равен 4 КБ. Каждый бит информации представляет собой площадку на дорожке, которая может быть намагничена -1 или нет -0. Эти площадки так же называются доменами. Чем меньше размер этой площадки, тем больше информации поместится на дорожке и более емкий получится жесткий диск. В начале развития применялась продольная запись. Площадка располагалась вдоль дорожки. В дальнейшем эту технологию заменила перпендикулярная запись, что позволило увеличить плотность данных и в свою очередь увеличить емкости HDD.

Совокупность дорожек равноудаленных от центра вращения двигателя называется цилиндром.

До того как жесткие диски перешагнули рубеж ёмкости в 500 MB хватало системы позиционирования CHS (cylinder-head-sector цилиндр-головка-сектор). С ростом объема в 1994 году была принята линейная система позиционирования LBA (linear block addressing). В случае с CHS жесткий диск был прозрачен для операционных систем, С применением же линейной адресации система обращается к нужному сектору жесткого диска, а уже блок управления HDD разбирается где находится физически этот сектор.

Блок позиционирования актуатора. Приводится в движение с помощью соленоидного двигателя. Последний состоит из статора и катушки. Статор состоит из одного или двух постоянных, сильных неодимовых магнитов. Точное позиционирование кронштейна с головками происходит путем подачи напряжения определенной силы на катушку (рисунок взят с http://www.3dnews.ru/editorial/640707)

От силы магнитов зависит скорость позиционирования головок и следовательно — время доступа к информации. Последнее в жестких дисках варьируется в пределах от 3 до 12 мс. Чем время меньше, тем быстрее и дороже жесткий диск. У компании WD есть три серии жесткий дисков : зеленая, синяя и черная. В зеленой применяется один неодимовый магнит и скорость вращения шпинделя 5400 об/мин. За счет этого получается довольно скромная производительность, зато приличная экономичность и низкое энергопотребление. У синих дисков применяется такой же магнит и скорость вращения поднимается до 7200 об/мин. По скоростным характеристикам он занимает промежуточное положение между зелеными и черными HDD. У черных же применяются два магнита и скорость в 7200 об/мин. Это позволяет добиться максимального быстродействия. Еще выше поднять быстродействие можно повысив скорость вращения двигателя с магнитными пластинами до 10000 или 15000 об/мин. Эти диски обладают минимальным временем доступа к информации и применяются в основном в серверах. Твердотельные диски со скоростью доступа < 1 мс пока остаются вне конкуренции.

Жесткие диски при работе производят два вида шума. От быстровращающихся магнитных дисков и от удара блока с головками об ограничитель. Последний возникает при возврате блока с головками в парковочную позицию. Для уменьшения этого удара производители ставят резиновые подкладки, но иногда и это не спасает, особенно в шустрых дисках. Существует два пути снижения шума от HDD. Первый сделать амортизирующие крепления в корпусе ПК. Об этом подробней можно прочитать . Путь второй — использовать технологию AAM, о которой написал подробнее .

3. Производство и производители жестких дисков

В начале было около 70 производителей HDD. Благодаря конкуренции их осталось всего три. Это Toshiba, Seagate и WD. На схеме ниже вы можете посмотреть в какие года происходили поглощения

Производство . В механическом цехе из алюминиевой болванки цилиндрической формы нарезаются заготовки. Затем заготовкам придается нужная форма возможно даже на токарных станках. После заготовки поступают в полировочный цех где поверхности полируются до нужного уровня. Затем происходит контроль и заготовки идут в цех нанесения магнитного покрытия. После снова происходит контроль. Затем происходит сборка жесткого диска и низкоуровневое форматирование . При этом процессе магнитные пластины разбиваются на дорожки и проверяются на битые или не читаемые сектора. Последние сразу помечаются чтобы исключить в них запись информации. На каждой дорожке есть некоторый резерв секторов. Именно из этого резерва происходит замена обнаруженных при работе сбойных участков.

Отдельно необходимо сказать про производство головок для чтения и записи информации. В современных жестких дисках каждый актуатор состоит из двух головок, для чтения и для записи. Сложность производства головок сравнима со сложностью производства процессоров , так же используется фотолитография. Устройства головок составляет производственную тайну.

Заключение

В статье мы затронули немножко истории приведя картинку первого жесткого диска выпущенного в 1956 году. Сказали возможную причину называния накопителей на магнитных жестких диска коротким словом — винт. Затем рассмотрели состав жесткого диска, то что скрывается внутри его корпуса. Постарались уделить внимание каждому блоку отдельно. Рассмотрели работу жесткого диска. В конце разобрались с производителями и самим производством HDD. Надеюсь вы вместе со мной продвинулись в теме HDD.

Накопитель на жёстких магнитных дисках или НЖМД (англ. Hard (Magnetic) Disk Drive, HDD, HMDD), жёсткий диск, винчестер, в просторечии «винт», хард, харддиск - устройство хранения информации, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

В отличие от «гибкого» диска (дискеты), информация в НЖМД записывается на жёсткие (алюминиевые или керамические) пластины, покрытые слоем ферромагнитного материала, чаще всего двуокиси хрома. В НЖМД используется от одной до нескольких пластин на одной оси. Считывающие головки в рабочем режиме не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образуемого у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм), а отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной зоне, где исключён их нештатный контакт с поверхностью дисков.

Принцип работы жесткого диска

Накопитель на жестком диске относится к наиболее совершенным и сложным устройствам современного персонального компьютера. Его диски способны вместить многие мегабайты информации, передаваемой с огромной скоростью. В то время, как почти все элементы компьютера работают бесшумно, жесткий диск ворчит и поскрипывает, что позволяет отнести его к тем немногим компьютерным устройствам, которые содержат как механические, так и электронные компоненты.

Основные принципы работы жесткого диска мало изменились со дня его создания. Устройство винчестера очень похоже на обыкновенный проигрыватель грампластинок. Только под корпусом может быть несколько пластин, насаженных на общую ось, и головки могут считывать информацию сразу с обеих сторон каждой пластины. Скорость вращения пластин (у некоторых моделей она доходит до 15000 оборотов в минуту) постоянна и является одной из основных характеристик. Головка перемещается вдоль пластины на некотором фиксированном расстоянии от поверхности. Чем меньше это расстояние, тем больше точность считывания информации, и тем больше может быть плотность записи информации. Взглянув на накопитель на жестком диске, вы увидите только прочный металлический корпус. Он полностью герметичен и защищает дисковод от частичек пыли, которые при попадании в узкий зазор между головкой и поверхностью диска могут повредить чувствительный магнитный слой и вывести диск из строя. Кроме того, корпус экранирует накопитель от электромагнитных помех. Внутри корпуса находятся все механизмы и некоторые электронные узлы. Механизмы - это сами диски, на которых хранится информация, головки, которые записывают и считывают информацию с дисков, а также двигатели, приводящие все это в движение. Диск представляет собой круглую пластину с очень ровной поверхностью чаще из алюминия, реже - из керамики или стекла, покрытую тонким ферромагнитным слоем. Диски изготовлены. Во многих накопителях используется слой оксида железа (которым покрывается обычная магнитная лента), но новейшие модели жестких дисков работают со слоем кобальта толщиной порядка десяти микрон. Такое покрытие более прочно и, кроме того, позволяет значительно увеличить плотность записи. Технология его нанесения близка к той, которая используется при производстве интегральных микросхем.

Количество дисков может быть различным - от одного до пяти, количество рабочих поверхностей, соответственно, вдвое больше (по две на каждом диске). Последнее (как и материал, использованный для магнитного покрытия) определяет емкость жесткого диска. Иногда наружные поверхности крайних дисков (или одного из них) не используются, что позволяет уменьшить высоту накопителя, но при этом количество рабочих поверхностей уменьшается и может оказаться нечетным.

Магнитные головки считывают и записывают информацию на диски. Принцип записи в общем схож с тем, который используется в обычном магнитофоне. Цифровая информация преобразуется в переменный электрический ток, поступающий на магнитную головку, а затем передается на магнитный диск, но уже в виде магнитного поля, которое диск может воспринять и "запомнить". Магнитное покрытие диска представляет собой множество мельчайших областей самопроизвольной (спонтанной) намагниченности. Для наглядности представьте себе, что диск покрыт слоем очень маленьких стрелок от компаса, направленных в разные стороны. Такие частицы-стрелки называются доменами. Под воздействием внешнего магнитного поля собственные магнитные поля доменов ориентируются в соответствии с его направлением. После прекращения действия внешнего поля на поверхности диска образуются зоны остаточной намагниченности. Таким образом сохраняется записанная на диск информация. Участки остаточной намагниченности, оказавшись при вращении диска напротив зазора магнитной головки, наводят в ней электродвижущую силу, изменяющуюся в зависимости от величины намагниченности. Пакет дисков, смонтированный на оси-шпинделе, приводится в движение специальным двигателем, компактно расположенным под ним. Скорость вращения дисков, как правило, составляет 7200 об./мин. Для того, чтобы сократить время выхода накопителя в рабочее состояние, двигатель при включении некоторое время работает в форсированном режиме. Поэтому источник питания компьютера должен иметь запас по пиковой мощности. Теперь о работе головок. Они перемещаются с помощью прецизионного шагового двигателя и как бы "плывут" на расстоянии в доли микрона от поверхности диска, не касаясь его. На поверхности дисков в результате записи информации образуются намагниченные участки, в форме концентрических окружностей. Они называются магнитными дорожками. Перемещаясь, головки останавливаются над каждой следующей дорожкой. Совокупность дорожек, расположенных друг под другом на всех поверхностях, называют цилиндром. Все головки накопителя перемещаются одновременно, осуществляя доступ к одноименным цилиндрам с одинаковыми номерами.

Устройство

Жёсткий диск состоит из гермозоны и блока электроники.

Гермозона

Гермозона включает в себя корпус из прочного сплава, собственно диски (пластины) с магнитным покрытием, блок головок с устройством позиционирования, электропривод шпинделя.

Блок головок - пакет рычагов из пружинистой стали (по паре на каждый диск). Одним концом они закреплены на оси рядом с краем диска. На других концах (над дисками) закреплены головки.

Диски (пластины), как правило, изготовлены из металлического сплава. Хотя были попытки делать их из пластика и даже стекла, но такие пластины оказались хрупкими и недолговечными. Обе плоскости пластин, подобно магнитофонной ленте, покрыты тончайшей пылью ферромагнетика - окислов железа, марганца и других металлов. Точный состав и технология нанесения держатся в секрете. Большинство бюджетных устройств содержит 1 или 2 пластины, но существуют модели с большим числом пластин.

Диски жёстко закреплены на шпинделе. Во время работы шпиндель вращается со скоростью несколько тысяч оборотов в минуту (3600, 4200, 5400, 7200, 10 000, 15 000). При такой скорости вблизи поверхности пластины создаётся мощный воздушный поток, который приподнимает головки и заставляет их парить над поверхностью пластины. Форма головок рассчитывается так, чтобы при работе обеспечить оптимальное расстояние от пластины. Пока диски не разогнались до скорости, необходимой для «взлёта» головок, парковочное устройство удерживает головки в зоне парковки. Это предотвращает повреждение головок и рабочей поверхности пластин.

Устройство позиционирования головок состоит из неподвижной пары сильных неодимовых постоянных магнитов или электромагнитов, а также катушки на подвижном блоке головок.

Вопреки расхожему мнению, внутри гермозоны нет вакуума. Одни производители делают её герметичной (отсюда и название) и заполняют очищенным и осушенным воздухом или нейтральными газами, в частности, азотом; а для выравнивания давления устанавливают тонкую металлическую или пластиковую мембрану. (В таком случае внутри корпуса жёсткого диска предусматривается маленький карман для пакетика силикагеля, который абсорбирует водяные пары, оставшиеся внутри корпуса после его герметизации). Другие производители выравнивают давление через небольшое отверстие с фильтром, способным задерживать очень мелкие (несколько микрометров) частицы. Однако в этом случае выравнивается и влажность, а также могут проникнуть вредные газы. Выравнивание давления необходимо, чтобы предотвратить деформацию корпуса гермозоны при перепадах атмосферного давления и температуры, а так же при прогреве устройства во время работы.

Пылинки, оказавшиеся при сборке в гермозоне и попавшие на поверхность диска, при вращении сносятся на ещё один фильтр - пылеуловитель.

Блок электроники

В ранних жёстких дисках управляющая логика была вынесена на MFM или RLL контроллер компьютера, а плата электроники содержала только модули аналоговой обработки и управление шпиндельным двигателем, позиционером и коммутатором головок. Увеличение скоростей передачи данных вынудило разработчиков уменьшить до предела длину аналогового тракта, и в современных жёстких дисках блок электроники обычно содержит: управляющий блок, постоянное запоминающее устройство (ПЗУ), буферную память, интерфейсный блок и блок цифровой обработки сигнала.

Интерфейсный блок обеспечивает сопряжение электроники жёсткого диска с остальной системой.

Блок управления представляет собой систему управления, принимающую электрические сигналы позиционирования головок, и вырабатывающую управляющие воздействия приводом типа «звуковая катушка», коммутации информационных потоков с различных головок, управления работой всех остальных узлов (к примеру, управление скоростью вращения шпинделя), приёма и обработки сигналов с датчиков устройства (система датчиков может включать в себя одноосный акселерометр, используемый в качестве датчика удара, трёхосный акселерометр, используемый в качестве датчика свободного падения, датчик давления, датчик угловых ускорений, датчик температуры).

Блок ПЗУ хранит управляющие программы для блоков управления и цифровой обработки сигнала, а также служебную информацию винчестера.

Буферная память сглаживает разницу скоростей интерфейсной части и накопителя (используется быстродействующая статическая память). Увеличение размера буферной памяти в некоторых случаях позволяет увеличить скорость работы накопителя.

Блок цифровой обработки сигнала осуществляет очистку считанного аналогового сигнала и его декодирование (извлечение цифровой информации). Для цифровой обработки применяются различные методы, например метод PRML (Partial Response Maximum Likelihood - максимальное правдоподобие при неполном отклике). Осуществляется сравнение принятого сигнала с образцами. При этом выбирается образец наиболее похожий по форме и временным характеристикам с декодируемым сигналом.

Низкоуровневое форматирование

На заключительном этапе сборки устройства поверхности пластин форматируются - на них формируются дорожки и секторы. Конкретный способ определяется производителем и/или стандартом, но, как минимум, на каждую дорожку наносится магнитная метка, обозначающая ее начало.

Существуют утилиты, способные тестировать физические сектора диска, и ограниченно просматривать и править его служебные данные. Конкретные возможности подобных утилит сильно зависят от модели диска и технических сведений, известных автору по соответствующему семейству моделей.

Объем, скорость и время доступа

Основными задачами производителей всегда было увеличение объема хранящейся на дисках информации и скорости работы с этой информацией. Как увеличить объем диска? Наиболее очевидным решением является увеличение количества пластин в корпусе жесткого диска. Подобным образом обычно различаются модели в пределах одного модельного ряда. Этот способ является наиболее простым и позволяет на одной и той же элементной базе получать диски различной емкости. Но у этого способа существуют естественные ограничения: количество дисков не может быть бесконечным. Увеличивается нагрузка на мотор, ухудшаются температурные и шумовые характеристики диска, вероятность брака растет пропорционально количеству пластин, а значит, труднее обеспечить надежность. Среди промышленно производимых дисков наибольшим количеством пластин обладает SCSI диск Seagate Barracuda 180 - у этого винчестера аж 12 пластин! Есть и рекордсмены в области упрощения устройства дисков - это, например, рассмотренный нами далее Maxtor 513DX и 541DX, у которого один диск, используемый только с одной стороны.

Технологически более сложный (и более перспективный) метод увеличения объема - увеличение плотности записи информации. Тут возникает целый ряд технологических проблем. Современные пластины изготовляются из алюминия или даже из стекла (некоторые модели IBM). Магнитное покрытие имеет сложную многослойную структуру и покрыто сверху специальным защитным слоем. Размеры частиц магнитного покрытия уменьшаются, а чувствительность их возрастает. Помимо улучшения параметров самих пластин, существенным усовершенствованиям должна подвергнуться система считывания информации. Необходимо уменьшить зазор между головкой и поверхностью пластины, повысить чувствительность головки. Но и тут законы физики накладывают свои естественные ограничения на предел применения подобных технологий. Ведь размеры магнитных частиц не могут уменьшаться бесконечно.

Самый простой способ увеличить скорость считывания - увеличить скорость вращения пластин. По этому пути и пошли конструкторы. Если пластины вращаются с большей скоростью, то за единицу времени под считывающей головкой проходит больше информации. На увеличение скорости считывания влияет также и рассмотренное выше увеличение плотности записи информации. Именно по этой причине SCSI диски, как правило, обладают большей скоростью вращения. Однако на такой скорости сложнее точно позиционировать головку считывания, поэтому плотность записи там меньше, чем на некоторых IDE дисках, а стоят такие диски больше. Так как головка при поиске информации перемещается только поперек диска, она вынуждена "ждать", пока диск повернется и сектор с запрашиваемыми данными окажется доступным для чтения. Это время зависит только от скорости вращения диска и называется временем ожидания информации (latency). Но необходимо понимать, что общее время доступа к информации определяется временем поиска нужной дорожки на диске и временем позиционирования внутри этой дорожки. Увеличение скорости вращения диска уменьшает лишь последнее значение. Для уменьшения времени поиска нужной дорожки совершенствуют привод считывающей головки и… уменьшают диаметр пластин диска. Почти все современные винчестеры выпускаются с пластинами диаметром 2,5 дюйма.

Позиционирование головки вообще является отдельной весьма нетривиальной проблемой. Достаточно сказать, что при современной плотности записи приходится учитывать даже тепловое расширение! Таким образом, увеличение скорости вращения диска существенно затрудняет точное позиционирование головки. И в попытках увеличить быстродействие диска иногда приходится жертвовать объемом, используя пластины с меньшей плотностью записи. Неудивительно, что наиболее дорогие и быстрые винчестеры, отличающиеся более высокой скоростью вращения, не используют максимальной технологически доступной на данный момент плотности записи. За скорость приходится платить.

Так какому диску отдать предпочтение? При одинаковом объеме большего внимание заслуживают модели с большей плотностью записи, по сравнению с моделями с большим количеством дисков, хотя бы потому, что у них выше линейная скорость чтения/записи (большие файлы читаются быстрее). Скорость доступа к информации напрямую зависит от скорости вращения пластин (быстрее работа с большим количеством мелких файлов). Но увеличение скорости приводит к удорожанию изделий, а иногда приходится жертвовать и плотностью записи.

Что такое HDD, жёсткий диск и винчестер - эти слова являются разными широко распространёнными терминами одного и того же устройства, входящего в состав компьютера. В связи с необходимостью хранения информации на компьютере появились устройства, хранители информации как жёсткий диск и стали неотъемлемой частью персонального компьютера.

Ранее на первых вычислительных машинах информация хранилась на перфолентах - это картонная бумага с пробитыми дырками, следующим шагом человека в развитие компьютера появилась магнитная запись, принцип работы которой сохранён в нынешних жёстких дисках. В отличие от сегодняшних терабайтных HDD, информация для сохранения помещаемая на них насчитывала десятки килобайт, это ничтожные размеры по сравнению с сегодняшней информацией.

Для чего нужен HDD и его функционал

Жёсткий диск - это постоянное запоминающее устройство компьютера, то есть, его основная функция - долговременное хранение данных. HDD в отличие от оперативной памяти не считается энергозависимой памятью, то есть, после отключения питания от компьютера, а потом как следствие и от жёсткого диска, вся информация, ранее сохранённая на этом накопителе, обязательно сохранится. Получается, что жёсткий диск служит лучшим местом на компьютере для хранения личной информации: файлы , фотографии, документы и видеозаписи, явно будут долго храниться именно на нём, а сохранённую информацию можно будет использовать и в дальнейшем в своих нуждах.

ATA/PATA (IDE) - этот параллельный интерфейс служит не только для подключения жёстких дисков, но и устройств для чтения дисков - оптических приводов . Ultra ATA является самым продвинутым представителем стандарта и имеет возможную скорость использования данных информации до 133 мегабайт в секунду. Указанный способ передачи данных считается сильно устаревшим и в сегодняшние дни используются в устаревших компьютерах, на современных системных платах разъёма IDE уже найти не получится.

SATA (Serial ATA) - представляет из себя последовательный интерфейс, который стал хорошей заменой для устаревшего PATA и в отличие от него имеется возможность для подключения только одного устройства, но на бюджетных системных платах, имеется несколько разъёмов для подключения. Стандарт подразделяется на ревизии, имеющие разные скорости передачи/обмена данных:

  • SATA имеет скорость обмена данных возможную до 150 Мб/с. (1.2 Гбит/с);
  • SATA rev. 2.0 - у данной ревизии скорость обмена данными в сравнение с первым SATA интерфейсом выросла в 2 раза до 300 МБ/с (2,4 Гбит/с);
  • SATA rev. 3.0 - обмен данных у ревизии стал ещё выше до 6 Гбит/с (600 МБ/с).

Все вышеописанные интерфейсы подключения семейства SATA взаимозаменяемы, но подключив, например, жёсткий диск с интерфейсом SATA 2 в разъём материнской платы SATA, обмен данных с жёстким диском будет проходит на основе самой старшей ревизии, в данном случает SATA ревизии 1.0.

Доброго всем времени суток, мои дорогие друзья и читатели. Мне друг один рассказывал, что когда он работал еще в видеосалоне, то пришла к нему бабуля лет 70-80. Подошла к другу и сказала, что ей нужен «ХАДЭДЭ». Друг как бы сразу не понял и переспросил, мол хадэдэ? Она повторила еще раз, но когда увидела, что друган не вкуривает, то достала бумажку и сказала, что внук сказал ей купить ХАДЭДЭ.

На той бумажке было написано HDD 160 GB. Ну друг усмехнулся и сказал, что это жесткий диск для компьютера и направил их в другой магазин. Но удивляет больше не это. Как внучок мог вообще послать свою бабушку за жестким диском? Ну с дуба что ли рухнул?

Но я к чему клоню? Давайте я вас всё таки расскажу, что такое HDD в компьютере. Тогда у вас точно не будет вопросов, если вы захотите купить его себе.

HDD (Hard Disk Drive) — жесткий диск вашего компьютера. Вы можете услышать в разговорах и альтернативные названия этого устройства, например «Винчестер», «Винт», «Хард», «Жесткий» и т.д. Устройство это нужно для хранения вашей информации, кроме того на него устанавливается операционная система, в которой вы работаете. Т.е. без жесткого диска вы за компьютером особо ничего не поделаете.

Жесткий диск является долговременным источником памяти и после отключения питания вся информация остается на нем, в отличие от быстрой оперативной памяти. Поэтому вы можете всегда хранить на нем свои файлы, фотографии, музыку и т.д. Но конечно это устройство, поэтому не стоит забывать о для большей безопасности.

Теория происхождения названия «Винчестер»

Я уже слышу вопрос «А почему же его называют винчестером? Это же стрелковое оружие!». Действительно, что может быть общего у устройства хранения информации и ружьем? Дело в том, что в 1973 году небезызвестная компания IBM выпустила жесткий диск модели 3340, но для созвучия его стали именовать просто «30-30», что означало два модуля по 30 мегабайт каждый.

Руководитель Кеннет Хотон нашел созвучие 30-30 в знаменитой винтовке. Дело в том, что патроны к этой винтовке имели такую же маркировку 30-30, где первая цифра означала размер калибра в дюймах (0.30 — 7,62 см), а вторая цифра означала вес пороха в гранах (это не опечатка, а мера веса), который засыпался патрон (30 гран — это примерно 1,94 грамма).

Для удобства и решено было использовать такое название в качестве сленга. Правда у американцев этот сленг уже давно не используется, а у нас еще пока не вышел из обихода, хотя чаще его можно слышать в сокращенной названии «Винт».

Устройство жесткого диска

Внешне эта штуковина выглядит как небольшая прямоугольная коробочка, но внутри ее находятся несколько магнитных дисков на одном шпенделе, которые внешне чем-то похожи на CD. И конечно же присутствует некая считывающая головка, которая и бегает по этим магнитным пластинам, считывая всю информацию. Ну естественно есть и другие составляющие, но думаю, что это всё уже детали.

И работа эта чем-то похожа на работу проигрывателя грампластинок, только считыватель без иголки и не прикасается к магнитным дискам, хотя расстояние между ними просто ничтожное.

Основные арактеристики жесткого диска

Объем

Объем вашего харда определяет, сколько информации вы сможете хранить на нем. Со временем размеры памяти на новых жестких увеличиваются, так как в этом есть реальная потребность. Если на моем первом компьютере объем был 40 ГБ и мне хватало с головой, то теперь у меня на компьютере 2000 ГБ и половину я уже забил. Конечно часть можно удалить без слез).

Но есть одна хитрость. Производители пишут размер, например 500 ГБ, но когда вы подключите винчестер к компьютеру, то увидите там гораздо меньший объем, где-то 476 ГБ. А куда же делось 24 лишних ГБ? Да всё очень просто.

Производители округляют размеры величин, мол 1 ГБ — это 1000 МБ, 1 МБ — это 1000 КБ, и т.д. Получается, что они вам продают диск объемом 500 миллионов байт и если разделить на 1000, а потом еще на 1000, то получится 500 ГБ.

Но ведь в 1 ГБ на самом деле не 1000, а 1024 МБ, так же как и в 1 МБ не 1000, а 1024 КБ. В итоге получается, что мы 500 миллионов делим на 1024, а потом еще на 1024 и получаем наши 476 ГБ с копейками. У меня на диске размером 2 Террабайта сжирается порядка 140 ГБ. Нехило, да? В общем теперь будете знать.

Скорость вращения

Производительность жесткого диска определяется также скоростью вращения шпинделя. И чем больше эта скорость, тем больше производительность диска, но тем больше требуется энергозатрат и больше вероятность отказа.

Для ноутбуков и внешних ЖД чаще всего используют скорость 5400 оборотов в минуту, так как это действительно целесообразнее для этих устройств. Скорость обмена информацией меньше, зато меньшая вероятность выхода из строя.

На стационарных компьютерах в большинстве случаях ставятся харды со скоростью 7200 об/мин. Здесь это действительно выгодно, так как на стационарниках как правило стоит более мощное оборудование, способное работать при такой скорости. Плюс ко всему компьютер постоянно подключен к розетке, а значит нехватки энергии не будет.

Существуют и большее количество оборотов, даже 15000, но здесь я их рассматривать не буду.

Интерфейс подключения

И конечно же жесткие диски постоянно совершенствуются и даже разъемы подключения у них меняются. Давайте посмотрим какие разъемы бывают.

IDE (ATA/PATA) — так называемый параллельный интерфейс с возможной скоростью использования данных до 133 МБ в секунду. Но сегодня этот интерфейс устарел и жестки с таким разъемом уже не производят.

SATA — Последовательный интерфейс, уже более современный, который пришел на замену IDE. У стандарта на данный момент есть три разных ревизии с разной скоростью передачи данных: SATA 1 — до 150 МБ/сек, SATA 2 — до 300 МБ/сек, SATA 3, до 600 МБ/сек.

USB — Этот стандарт относится к внешним переносным жестким дискам, которые подключаются к компьютеру через USB и спокойно можно работать. Плюс такого устройства в том, что вы в любой момент можете вырубить его, не отключая сам компьютер.

Есть и другие интерфейсы, например SCSI или SAS, но это уже не обязательные для простого пользования стандарты.

Форм-фактор

Меня тут недавно спросили, а что такое форм-фактор у хардов? Тут всё просто. Это всего лишь его габариты. Различают 2,5 и 3,5 дюйма. Есть конечно и другие, но ими в повседневной жизни никто не пользуется или они давно устарели.

В ноутбуки вставлют ЖД 2,5", а в стационарные компы 3,5". Я думаю, что вы ничего не перепутаете)


Ну вот вроде и всё, что я вам хотел поведать в этой статье. Но я уже слышу: «А почему не рассказал про SSD?». Друзья мои, про SSD надо писать отдельную статью, тем более этот вид является скоростным твердотельным накопителем. В общем обязательно про него напишу).

С уважением, Дмитрий Костин.

Многие из вас знают, что вся информация на компьютере, представленная в виде файлов и папок, хранится на жестком диске. А вот, что такое жесткий диск и для чего он предназначен, правильно ответят не многие. Людям, далёким от программирования очень тяжело представить, каким образом можно хранить информацию на какой-то железяке. Это ведь не шкатулка и не лист бумаги, на котором можно эту самую информацию можно записать и спрятать в шкатулку. Да, жесткий диск это не шкатулка с письмом.

Жесткий диск (HDD, HMDD-от англ. hard (magnetic) disk drive) – это магнитный носитель информации. На компьютерном сленге его называют «винчестер». Он предназначен для хранения информации в виде фотографий, картинок, писем, книг различных форматов, музыки, фильмов, и т.п. Внешне это устройство совсем не похоже на диск. Скорее оно похоже на небольшую прямоугольную железную коробочку.

Внутреннее устройство жесткого диска похоже на старый проигрыватель виниловых пластинок.

Внутри этой металлической коробочки есть круглые алюминиевые или стеклянные пластины-диски, находящиеся на одной оси, по которым перемещается считывающая головка. В отличие от проигрывателя, головка жесткого диска в рабочем режиме не касается поверхности пластин.

Для удобства работы жесткий диск делят на несколько разделов. Это разделение условное. Осуществляется такое при помощи операционной системы или специальными программами. Новые разделы называют логическими дисками. Им присваиваются буквы С, D, E или F. Обычно устанавливается на диск C, а файлы и папки хранят на других дисках, чтобы при крахе системы ваши файлы и папки не пострадали.

Посмотрите видеоролик о том, что такое жесткий диск:

Основные характеристики жестких дисков

  • Форм-фактор – это ширина жесткого диска в дюймах. Стандартный размер для настольного компьютера 3.5 дюйма, а для ноутбуков 2.5 дюйма;
  • Интерфейс – в современных компьютерах используется подключения к материнской плате SATA различных версий. SATA, SATA II, SATA III. В старых компьютерах используется интерфейс IDE.
  • Ёмкость – это максимальное количество информации, которое может хранить жесткий диск, измеряется в гигабайтах;
  • Скорость вращения шпинделя – это количество оборотов шпинделя в минуту. Чем больше скорость вращения диска, тем лучше. Для операционных систем необходимо ставить диски от 7 200 об/мин и выше, а для хранения файлов можно устанавливать диски с меньшей скоростью.
  • Время наработки на отказ – это среднее время безотказной работы, расчитанное производителем. Чем оно больше, тем лучше;
  • Время произвольного доступа — это среднее значение времени, требуемое головке для позиционирования на произвольном участке пластины. Величина не постоянная.
  • Ударостойкость – это способность жесткого диска переносить смену давления и удары.
  • Уровень шума, который издает диск во время работы, измеряется в децибеллах. Чем он меньше, тем лучше.

Сейчас уже есть диски SSD (solid-state drive в простом переводе — твёрдотельный накопитель), которые не имеют ни шпинделя, ни пластин. Это запоминающее устройство на основе микросхем памяти.